2 resultados para VoIP

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this project is to update the tool of Network Traffic Recognition System (NTRS) which is proprietary software of Ericsson AB and Tsinghua University, and to implement the updated tool to finish SIP/VoIP traffic recognition. Basing on the original NTRS, I analyze the traffic recognition principal of NTRS, and redesign the structure and module of the tool according to characteristics of SIP/VoIP traffic, and then finally I program to achieve the upgrade. After the final test with our SIP data trace files in the updated system, a satisfactory result is derived. The result presents that our updated system holds a rate of recognition on a confident level in the SIP session recognition as well as the VoIP call recognition. In the comparison with the software of Wireshark, our updated system has a result which is extremely close to Wireshark’s output, and the working time is much less than Wireshark. In the aspect of practicability, the memory overflow problem is avoided, and the updated system can output the specific information of SIP/VoIP traffic recognition, such as SIP type, SIP state, VoIP state, etc. The upgrade fulfills the demand of this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the rapid development of telecommunication industry, the IP multimedia Subsystem (IMS) could very well be the panacea for most telecom operators. It is originally defined as the core network for 3G mobile systems by the 3rd Generation Partnership Project (3GPP), the more recent development is merging between fixed line network and wireless networkd This report researchs the characteristic of the IMS data and proposes an IMS characterization analysis. We captured the IMS traffic data with 10 tousands users for about 41 hours. By analyzing the characteristics of the IMS, we know that the most important application in the IMS is VoIP call. Then we use the tool designed by Tsinghua University & Ericsson Company to recognize the data, and the results we got can be used to build the traffic models. From the results of the traffic models, I will get some reasons and conclusion. The traffic model gives out the types of session and types of VoIP call. I bring into a concept—busy hour. This concept is very important because it can help us to know which period is the peak of the VoIP call. The busy hour is from 10:00 to 11:00 in the morning. I also bring into another concept—connection ratio. This concept is significant because it can evaluate whether the VoIP call is good when it use IMS network. By comparing the traffic model with other one’s models, we found the different results from them, both the accuracy and the busy hour. From the contract, we got the advantages of our traffic models.