4 resultados para Verification Bias
em Dalarna University College Electronic Archive
Resumo:
Modular product architectures have generated numerous benefits for companies in terms of cost, lead-time and quality. The defined interfaces and the module’s properties decrease the effort to develop new product variants, and provide an opportunity to perform parallel tasks in design, manufacturing and assembly. The background of this thesis is that companies perform verifications (tests, inspections and controls) of products late, when most of the parts have been assembled. This extends the lead-time to delivery and ruins benefits from a modular product architecture; specifically when the verifications are extensive and the frequency of detected defects is high. Due to the number of product variants obtained from the modular product architecture, verifications must handle a wide range of equipment, instructions and goal values to ensure that high quality products can be delivered. As a result, the total benefits from a modular product architecture are difficult to achieve. This thesis describes a method for planning and performing verifications within a modular product architecture. The method supports companies by utilizing the defined modules for verifications already at module level, so called MPV (Module Property Verification). With MPV, defects are detected at an earlier point, compared to verification of a complete product, and the number of verifications is decreased. The MPV method is built up of three phases. In Phase A, candidate modules are evaluated on the basis of costs and lead-time of the verifications and the repair of defects. An MPV-index is obtained which quantifies the module and indicates if the module should be verified at product level or by MPV. In Phase B, the interface interaction between the modules is evaluated, as well as the distribution of properties among the modules. The purpose is to evaluate the extent to which supplementary verifications at product level is needed. Phase C supports a selection of the final verification strategy. The cost and lead-time for the supplementary verifications are considered together with the results from Phase A and B. The MPV method is based on a set of qualitative and quantitative measures and tools which provide an overview and support the achievement of cost and time efficient company specific verifications. A practical application in industry shows how the MPV method can be used, and the subsequent benefits
Resumo:
Product verifications have become a cost-intensive and time-consuming aspect of modern electronics production, but with the onset of an ever-increasing miniaturisation, these aspects will become even more cumbersome. One may also go as far as to point out that certain precision assembly, such as within the biomedical sector, is legally bound to have 0 defects within production. Since miniaturisation and precision assembly will soon become a part of almost any product, the verifications phases of assembly need to be optimised in both functionality and cost. Another aspect relates to the stability and robustness of processes, a pre-requisite for flexibility. Furthermore, as the re-engineering cycle becomes ever more important, all information gathered within the ongoing process becomes vital. In view of these points, product, or process verification may be assumed to be an important and integral part of precision assembly. In this paper, product verification is defined as the process of determining whether or not the products, at a given phase in the life-cycle, fulfil the established specifications. Since the product is given its final form and function in the assembly, the product verification normally takes place somewhere in the assembly line which is the focus for this paper.
Resumo:
We consider methods for estimating causal effects of treatment in the situation where the individuals in the treatment and the control group are self selected, i.e., the selection mechanism is not randomized. In this case, simple comparison of treated and control outcomes will not generally yield valid estimates of casual effects. The propensity score method is frequently used for the evaluation of treatment effect. However, this method is based onsome strong assumptions, which are not directly testable. In this paper, we present an alternative modeling approachto draw causal inference by using share random-effect model and the computational algorithm to draw likelihood based inference with such a model. With small numerical studies and a real data analysis, we show that our approach gives not only more efficient estimates but it is also less sensitive to model misspecifications, which we consider, than the existing methods.