4 resultados para Vegetation substitution

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the end of 2005, the State Council of China passed ”The Decision on adjusting the Individual Account of Basic Pension System”, which adjusted the individual account in the 1997 basic pension system. In this essay, we will analyze the adjustment above, and use Life Annuity Actuarial Theory to establish the basic pension substitution rate model. Monte Carlo simulation is also used to prove the rationality of the model. Some suggestions are put forward associated with the substitution rate according to the current policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest nurseries are essential for producing good quality seedlings, thus being a key element in the reforestation process. With increasing climate change awareness, nursery managers are looking for new tools that can help reduce the effects of their operations on the environment. The ZEPHYR project, funded by the European Commission under the Seventh Framework Programme (FP7), has the objective of finding new alternatives for nurseries by developing innovative zero-impact technologies for forest plant production. Due to their direct relationship to the energy consumption of the nurseries, one of the main elements addressed are the grow lights used for the pre-cultivation. New LED luminaires with a light spectrum tailored to the seedlings’ needs are being studied and compared against the traditional fluorescent lamps. Seedlings of Picea abies and Pinus sylvestris were grown under five different light spectra (one fluorescent and 4 LED) during 5 weeks with a photoperiod of 16 hours at 100 μmol∙m-2∙s-1 and 60% humidity. In order to evaluate if these seedlings were able cope with real field stress conditions, a forest field trial was also designed. The terrain chosen was a typical planting site in mid-Sweden after clear-cutting. Two vegetation periods after the outplanting, the seedlings that were pre-cultivated under the LED lamps have performed at least as well as those that were grown under fluorescent lights. These results show that there is a good  potential for lightning substitution in forestry nurseries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetation growing on railway trackbeds and embankments present potential problems. The presence of vegetation threatens the safety of personnel inspecting the railway infrastructure. In addition vegetation growth clogs the ballast and results in inadequate track drainage which in turn could lead to the collapse of the railway embankment. Assessing vegetation within the realm of railway maintenance is mainly carried out manually by making visual inspections along the track. This is done either on-site or by watching videos recorded by maintenance vehicles mainly operated by the national railway administrative body. A need for the automated detection and characterisation of vegetation on railways (a subset of vegetation control/management) has been identified in collaboration with local railway maintenance subcontractors and Trafikverket, the Swedish Transport Administration (STA). The latter is responsible for long-term planning of the transport system for all types of traffic, as well as for the building, operation and maintenance of public roads and railways. The purpose of this research project was to investigate how vegetation can be measured and quantified by human raters and how machine vision can automate the same process. Data were acquired at railway trackbeds and embankments during field measurement experiments. All field data (such as images) in this thesis work was acquired on operational, lightly trafficked railway tracks, mostly trafficked by goods trains. Data were also generated by letting (human) raters conduct visual estimates of plant cover and/or count the number of plants, either on-site or in-house by making visual estimates of the images acquired from the field experiments. Later, the degree of reliability of(human) raters’ visual estimates were investigated and compared against machine vision algorithms. The overall results of the investigations involving human raters showed inconsistency in their estimates, and are therefore unreliable. As a result of the exploration of machine vision, computational methods and algorithms enabling automatic detection and characterisation of vegetation along railways were developed. The results achieved in the current work have shown that the use of image data for detecting vegetation is indeed possible and that such results could form the base for decisions regarding vegetation control. The performance of the machine vision algorithm which quantifies the vegetation cover was able to process 98% of the im-age data. Investigations of classifying plants from images were conducted in in order to recognise the specie. The classification rate accuracy was 95%.Objective measurements such as the ones proposed in thesis offers easy access to the measurements to all the involved parties and makes the subcontracting process easier i.e., both the subcontractors and the national railway administration are given the same reference framework concerning vegetation before signing a contract, which can then be crosschecked post maintenance.A very important issue which comes with an increasing ability to recognise species is the maintenance of biological diversity. Biological diversity along the trackbeds and embankments can be mapped, and maintained, through better and robust monitoring procedures. Continuously monitoring the state of vegetation along railways is highly recommended in order to identify a need for maintenance actions, and in addition to keep track of biodiversity. The computational methods or algorithms developed form the foundation of an automatic inspection system capable of objectively supporting manual inspections, or replacing manual inspections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections