14 resultados para Ultrasonic inspections

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper seeks to describe and discuss the impact of inspections of schools in Sweden. It outlines the political context, based on New Public Management (NPM) theory, according to what role the Schools Inspectorate is supposed to play in order to govern and control. Attention is also devoted, referring an on-going case study, to how inspections influence head teachers and their leadership in their everyday work.   Reports from the Schools inspectorate are public. This forces both politicians and head teachers to take measures. In this case, the head teachers perceived that the inspection reports confirmed what they already knew, but it also gave them an alibi and a tool to push their teachers to take part in everyday school development work. During the first year after the inspection the head teachers mainly strived to adjust formal deficiencies in local steering documents. However, some of the deviations reported from the Schools inspectorate are regarding pedagogical problems that are complicated and difficult to handle. As interventions in many cases will show up much later the results are, for example as increased goal fulfilment, in this case, still an open question. Nevertheless, it seems obvious that the Schools Inspectorate must be seen as a result of the governing philosophy that denotes New Public Management NPM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modular product architectures have generated numerous benefits for companies in terms of cost, lead-time and quality. The defined interfaces and the module’s properties decrease the effort to develop new product variants, and provide an opportunity to perform parallel tasks in design, manufacturing and assembly. The background of this thesis is that companies perform verifications (tests, inspections and controls) of products late, when most of the parts have been assembled. This extends the lead-time to delivery and ruins benefits from a modular product architecture; specifically when the verifications are extensive and the frequency of detected defects is high. Due to the number of product variants obtained from the modular product architecture, verifications must handle a wide range of equipment, instructions and goal values to ensure that high quality products can be delivered. As a result, the total benefits from a modular product architecture are difficult to achieve. This thesis describes a method for planning and performing verifications within a modular product architecture. The method supports companies by utilizing the defined modules for verifications already at module level, so called MPV (Module Property Verification). With MPV, defects are detected at an earlier point, compared to verification of a complete product, and the number of verifications is decreased. The MPV method is built up of three phases. In Phase A, candidate modules are evaluated on the basis of costs and lead-time of the verifications and the repair of defects. An MPV-index is obtained which quantifies the module and indicates if the module should be verified at product level or by MPV. In Phase B, the interface interaction between the modules is evaluated, as well as the distribution of properties among the modules. The purpose is to evaluate the extent to which supplementary verifications at product level is needed. Phase C supports a selection of the final verification strategy. The cost and lead-time for the supplementary verifications are considered together with the results from Phase A and B. The MPV method is based on a set of qualitative and quantitative measures and tools which provide an overview and support the achievement of cost and time efficient company specific verifications. A practical application in industry shows how the MPV method can be used, and the subsequent benefits

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The desire to conquer markets through advanced product design and trendy business strategies are still predominant approaches in industry today. In fact, product development has acquired an ever more central role in the strategic planning of companies, and it has extended its influence to R&D funding levels as well. It is not surprising that many national R&D project frameworks within the EU today are dominated by product development topics, leaving production engineering, robotics, and systems on the sidelines. The reasons may be many but, unfortunately, the link between product development and the production processes they cater for are seldom treated in depth. The issue dealt with in this article relates to how product development is applied in order to attain the required production quality levels a company may desire, as well as how one may counter assembly defects and deviations through quantifiable design approaches. It is recognized that product verifications (tests, inspections, etc.) are necessary, but the application of these tactics often result in lead-time extensions and increased costs. Modular architectures improve this by simplifying the verification of the assembled product at module level. Furthermore, since Design for Assembly (DFA) has shown the possibility to identify defective assemblies, it may be possible to detect potential assembly defects already in the product and module design phase. The intention of this paper is to discuss and describe the link between verifications of modular architectures, defects and design for assembly. The paper is based on literature and case studies; tables and diagrams are included with the intention of increasing understanding of the relation between poor designs, defects and product verifications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract  Pedagogical documentation is a certain procedure for documenting that, in recent years, has been embraced in several Swedish preschools. Teachers document children’s actions and conversations usually by photos or video recordings. This documentation is to be used for a pedagogical purpose. However, studies and governmental inspections have shown that pedagogical documentation gives rise to many questions among preschool teachers. The purpose of this study is to gain insight into what is being expressed when preschool teachers discuss pedagogical documentation, focusing on themes of content and on the participants’ expressions of their points of view. The data is comprised of transcriptions from audio recordings of discussions conducted in a research circle. The participants are eight preschool teachers that met over the course of one year. Each meeting focused on the documentation provided by a different participant. In that way the contents of the discussions were framed by the teachers own questions and narratives. Theoretically, the study departs from Social Constructionism and Discursive Psychology. The preschool teachers’ utterances have been analyzed using concepts of interpretative repertoires and ideological dilemmas. The results show the main themes to be: Knowledge content in a preschool setting, children’s learning, the teacher’s role and implementation of pedagogical documentation. The participants’ joint position is that the knowledge content at the preschool level is defined by the curriculum for the preschool. Concerning children’s learning and the teacher’s role, two main standpoints are disclosed. Ideologically those standpoints derive from two opposing theories of education. Based on how the standpoints have been expressed I have called them ”predetermined learning” versus ”non-predetermined learning”. One main distinction between the standpoints is that predetermined learning emphasizes the results of learning, while non-predetermined learning emphasizes the processes of learning. The participants’ utterances show that teachers tend to subscribe to the idea that there is only one acceptable way of working with pedagogical documentation. This sometimes creates performance anxiety and feelings of not succeeding and has led to arguments advocating an alternate approach; pedagogical documentation can be done in many ways. The ideological dilemmas within the discourse can be perceived as resources by which the participants argue about knowledge, learning, teaching and about the implementation of pedagogical documentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper seeks to describe and discuss the impact of inspections of schools in Sweden. It outlines the political context, based on New Public Management (NPM) theory, according to what role the Schools Inspectorate is supposed to play in order to govern and control. Attention is also devoted, referring an on-going case study, to how inspections influence head teachers and their leadership in their everyday work.   Reports from the Schools inspectorate are public. This forces both politicians and head teachers to take measures. In this case, the head teachers perceived that the inspection reports confirmed what they already knew, but it also gave them an alibi and a tool to push their teachers to take part in everyday school development work. During the first year after the inspection the head teachers mainly strived to adjust formal deficiencies in local steering documents. However, some of the deviations reported from the Schools inspectorate are regarding pedagogical problems that are complicated and difficult to handle. As interventions in many cases will show up much later the results are, for example as increased goal fulfilment, in this case, still an open question. Nevertheless, it seems obvious that the Schools Inspectorate must be seen as a result of the governing philosophy that denotes New Public Management NPM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetation growing on railway trackbeds and embankments present potential problems. The presence of vegetation threatens the safety of personnel inspecting the railway infrastructure. In addition vegetation growth clogs the ballast and results in inadequate track drainage which in turn could lead to the collapse of the railway embankment. Assessing vegetation within the realm of railway maintenance is mainly carried out manually by making visual inspections along the track. This is done either on-site or by watching videos recorded by maintenance vehicles mainly operated by the national railway administrative body. A need for the automated detection and characterisation of vegetation on railways (a subset of vegetation control/management) has been identified in collaboration with local railway maintenance subcontractors and Trafikverket, the Swedish Transport Administration (STA). The latter is responsible for long-term planning of the transport system for all types of traffic, as well as for the building, operation and maintenance of public roads and railways. The purpose of this research project was to investigate how vegetation can be measured and quantified by human raters and how machine vision can automate the same process. Data were acquired at railway trackbeds and embankments during field measurement experiments. All field data (such as images) in this thesis work was acquired on operational, lightly trafficked railway tracks, mostly trafficked by goods trains. Data were also generated by letting (human) raters conduct visual estimates of plant cover and/or count the number of plants, either on-site or in-house by making visual estimates of the images acquired from the field experiments. Later, the degree of reliability of(human) raters’ visual estimates were investigated and compared against machine vision algorithms. The overall results of the investigations involving human raters showed inconsistency in their estimates, and are therefore unreliable. As a result of the exploration of machine vision, computational methods and algorithms enabling automatic detection and characterisation of vegetation along railways were developed. The results achieved in the current work have shown that the use of image data for detecting vegetation is indeed possible and that such results could form the base for decisions regarding vegetation control. The performance of the machine vision algorithm which quantifies the vegetation cover was able to process 98% of the im-age data. Investigations of classifying plants from images were conducted in in order to recognise the specie. The classification rate accuracy was 95%.Objective measurements such as the ones proposed in thesis offers easy access to the measurements to all the involved parties and makes the subcontracting process easier i.e., both the subcontractors and the national railway administration are given the same reference framework concerning vegetation before signing a contract, which can then be crosschecked post maintenance.A very important issue which comes with an increasing ability to recognise species is the maintenance of biological diversity. Biological diversity along the trackbeds and embankments can be mapped, and maintained, through better and robust monitoring procedures. Continuously monitoring the state of vegetation along railways is highly recommended in order to identify a need for maintenance actions, and in addition to keep track of biodiversity. The computational methods or algorithms developed form the foundation of an automatic inspection system capable of objectively supporting manual inspections, or replacing manual inspections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A system for weed management on railway embankments that is both adapted to the environment and efficient in terms of resources requires knowledge and understanding about the growing conditions of vegetation so that methods to control its growth can be adapted accordingly. Automated records could complement present-day manual inspections and over time come to replace these. One challenge is to devise a method that will result in a reasonable breakdown of gathered information that can be managed rationally by affected parties and, at the same time, serve as a basis for decisions with sufficient precision. The project examined two automated methods that may be useful for the Swedish Transport Administration in the future: 1) A machine vision method, which makes use of camera sensors as a way of sensing the environment in the visible and near infrared spectrum; and 2) An N-Sensor method, which transmits light within an area that is reflected by the chlorophyll in the plants. The amount of chlorophyll provides a value that can be correlated with the biomass. The choice of technique depends on how the information is to be used. If the purpose is to form a general picture of the growth of vegetation on railway embankments as a way to plan for maintenance measures, then the N-Sensor technique may be the right choice. If the plan is to form a general picture as well as monitor and survey current and exact vegetation status on the surface over time as a way to fight specific vegetation with the correct means, then the machine vision method is the better of the two. Both techniques involve registering data using GPS positioning. In the future, it will be possible to store this information in databases that are directly accessible to stakeholders online during or in conjunction with measures to deal with the vegetation. The two techniques were compared with manual (visual) estimations as to the levels of vegetation growth. The observers (raters) visual estimation of weed coverage (%) differed statistically from person to person. In terms of estimating the frequency (number) of woody plants (trees and bushes) in the test areas, the observers were generally in agreement. The same person is often consistent in his or her estimation: it is the comparison with the estimations of others that can lead to misleading results. The system for using the information about vegetation growth requires development. The threshold for the amount of weeds that can be tolerated in different track types is an important component in such a system. The classification system must be capable of dealing with the demands placed on it so as to ensure the quality of the track and other pre-conditions such as traffic levels, conditions pertaining to track location, and the characteristics of the vegetation. The project recommends that the Swedish Transport Administration: Discusses how threshold values for the growth of vegetation on railway embankments can be determined Carries out registration of the growth of vegetation over longer and a larger number of railway sections using one or more of the methods studied in the project Introduces a system that effectively matches the information about vegetation to its position Includes information about the growth of vegetation in the records that are currently maintained of the track’s technical quality, and link the data material to other maintenance-related databases Establishes a number of representative surfaces in which weed inventories (by measuring) are regularly conducted, as a means of developing an overview of the long-term development that can serve as a basis for more precise prognoses in terms of vegetation growth Ensures that necessary opportunities for education are put in place

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.