2 resultados para Trickling filters

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the age of multi-media, portable electronic devices such as mobile phones, personal digital assistant and handheld gaming systems have increased the demand for high performance displays with low cost production. Inkjet printing color optical filters (COF) for LCD applications seem to be an interesting alternative to decrease the production costs. The advantage of inkjet printing technology is to be fast, accurate, easy to run and cheaper than other technologies. In this master thesis work, we used various disciplines such as optical microscopy, rheology, inkjet printing, profilometering and colorimetry. The specific aim of the thesis was to investigate the feasibility of using company-A pigment formulation in inkjet production of COF for active matrix LCD applications. Ideal viscosity parameters were determined from 10 to 20mPa·s for easy inkjet printing at room temperature. The red pigments used are fully dispersed into the solvent and present an excellent homogenous repartition after printing. Thickness investigations revealed that the printed COF were equal or slightly thicker than typically manufactured ones. The colorimetry investigations demonstrated color coordinates very close to the NTSC red standard. LED backlighting seems to be a valuable solution to combine with the printed COF regarding to the spectrum and color analysis. The results on this thesis will increase the understanding of inkjet printing company-A pigments to produce COF for LCD applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.