9 resultados para Travel time prediction
em Dalarna University College Electronic Archive
Resumo:
In this paper we investigate how attitudes to health and exercise in connection with cycling influence the estimation of values of travel time savings in different kinds of bicycle environments (mixed traffic, bicycle lane in the road way, bicycle path next to the road, and bicycle path not in connection with the road). The results, based on two Swedish stated choice studies, suggest that the values of travel time savings are lower when cycling in better conditions. Surprisingly, the respondents do not consider cycling on a path next to the road worse than cycling on a path not in connection to the road, indicating that they do not take traffic noise and air pollution into account in their decision to cycle. No difference can be found between cycling on a road way (mixed traffic) and cycling in a bicycle lane in the road way. The results also indicate that respondents that include health aspects in their choice to cycle have lower value of travel time savings for cycling than respondents that state that health aspects are of less importance, at least when cycling on a bicycle path. The appraisals of travel time savings regarding cycling also differ a lot depending on the respondents’ alternative travel mode. The individuals who stated that they will take the car if they do not cycle have a much higher valuation of travel time savings than the persons stating public transport as the main alternative to cycling.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population always travels to the nearest facility. Drezner and Drezner (2006, 2007) provide three arguments on why this assumption might be incorrect, and they introduce the extended the gravity p-median model to relax the assumption. We favour the gravity p-median model, but we note that in an applied setting, Drezner and Drezner’s arguments are incomplete. In this communication, we point at the existence of a fourth compelling argument for the gravity p-median model.
Resumo:
An administrative border might hinder the optimal allocation of a given set of resources by restricting the flow of goods, services, and people. In this paper we address the question: Do administrative borders lead to poor accessibility to public service such as hospitals? In answering the question, we have examined the case of Sweden and its regional borders. We have used detailed data on the Swedish road network, its hospitals, and its geo-coded population. We have assessed the population’s spatial accessibility to Swedish hospitals by computing the inhabitants’ distance to the nearest hospital. We have also elaborated several scenarios ranging from strongly confining regional borders to no confinements of borders and recomputed the accessibility. Our findings imply that administrative borders are only marginally worsening the accessibility.
Resumo:
A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.
Resumo:
Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
This report describes the outcome of the first visit to Tanzania, within the project "Mini-grids supplied by renewable energy - improving technical and social feasibility". The trip included visits to three different organizations; Ihushi Development Center (IDC) near Mwanza, TIDESO near Bukoba, and Mavuno Project in Karagwe. At IDC, a brief evaluation of the current power system was done and measuring equipment for long term measurements were installed. At all three locations investigations regarding the current and future electricity demand were conducted and connections to people relevant to the study were established. The report is including as well some technical specifications as some observations regarding organization and management of the technical systems. The trip was including only short visits and therefore only brief introductions to the different organizations, based on observations done by the author. The report is hence describing the author’s understanding of the technical system and social structures after only short visits to each of the organizations, and may differ from observations done at another point in time, over a different time period, or by some other person.This report describes the outcome of the first visit to Tanzania, within the project "Mini-grids supplied by renewable energy - improving technical and social feasibility". The trip included visits to three different organizations; Ihushi Development Center (IDC) near Mwanza, TIDESO near Bukoba, and Mavuno Project in Karagwe. At IDC, a brief evaluation of the current power system was done and measuring equipment for long term measurements were installed. At all three locations investigations regarding the current and future electricity demand were conducted and connections to people relevant to the study were established. The report is including as well some technical specifications as some observations regarding organization and management of the technical systems. The trip was including only short visits and therefore only brief introductions to the different organizations, based on observations done by the author. The report is hence describing the author’s understanding of the technical system and social structures after only short visits to each of the organizations, and may differ from observations done at another point in time, over a different time period, or by some other person.
Resumo:
Accurate speed prediction is a crucial step in the development of a dynamic vehcile activated sign (VAS). A previous study showed that the optimal trigger speed of such signs will need to be pre-determined according to the nature of the site and to the traffic conditions. The objective of this paper is to find an accurate predictive model based on historical traffic speed data to derive the optimal trigger speed for such signs. Adaptive neuro fuzzy (ANFIS), classification and regression tree (CART) and random forest (RF) were developed to predict one step ahead speed during all times of the day. The developed models were evaluated and compared to the results obtained from artificial neural network (ANN), multiple linear regression (MLR) and naïve prediction using traffic speed data collected at four sites located in Sweden. The data were aggregated into two periods, a short term period (5-min) and a long term period (1-hour). The results of this study showed that using RF is a promising method for predicting mean speed in the two proposed periods.. It is concluded that in terms of performance and computational complexity, a simplistic input features to the predicitive model gave a marked increase in the response time of the model whilse still delivering a low prediction error.