8 resultados para Tor, Network Forensics, Traffic Analysis, Hidden Service, Deanonymization, Traffic Correlation
em Dalarna University College Electronic Archive
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB).IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth datatransmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] First, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one incontinuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be include CAC, traffic policing used for traffic control.QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator andanalytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
With the rapid development of telecommunication industry, the IP multimedia Subsystem (IMS) could very well be the panacea for most telecom operators. It is originally defined as the core network for 3G mobile systems by the 3rd Generation Partnership Project (3GPP), the more recent development is merging between fixed line network and wireless networkd This report researchs the characteristic of the IMS data and proposes an IMS characterization analysis. We captured the IMS traffic data with 10 tousands users for about 41 hours. By analyzing the characteristics of the IMS, we know that the most important application in the IMS is VoIP call. Then we use the tool designed by Tsinghua University & Ericsson Company to recognize the data, and the results we got can be used to build the traffic models. From the results of the traffic models, I will get some reasons and conclusion. The traffic model gives out the types of session and types of VoIP call. I bring into a concept—busy hour. This concept is very important because it can help us to know which period is the peak of the VoIP call. The busy hour is from 10:00 to 11:00 in the morning. I also bring into another concept—connection ratio. This concept is significant because it can evaluate whether the VoIP call is good when it use IMS network. By comparing the traffic model with other one’s models, we found the different results from them, both the accuracy and the busy hour. From the contract, we got the advantages of our traffic models.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
The p-median problem is often used to locate p service centers by minimizing their distances to a geographically distributed demand (n). The optimal locations are sensitive to geographical context such as road network and demand points especially when they are asymmetrically distributed in the plane. Most studies focus on evaluating performances of the p-median model when p and n vary. To our knowledge this is not a very well-studied problem when the road network is alternated especially when it is applied in a real world context. The aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the density in the road network is alternated. The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 service centers we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000. To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when nodes in the road network increase and p is low. When p is high the improvements are larger. The results also show that choice of the best network depends on p. The larger p the larger density of the network is needed.
Resumo:
During the last decade, the Internet usage has been growing at an enormous rate which has beenaccompanied by the developments of network applications (e.g., video conference, audio/videostreaming, E-learning, E-Commerce and real-time applications) and allows several types ofinformation including data, voice, picture and media streaming. While end-users are demandingvery high quality of service (QoS) from their service providers, network undergoes a complex trafficwhich leads the transmission bottlenecks. Considerable effort has been made to study thecharacteristics and the behavior of the Internet. Simulation modeling of computer networkcongestion is a profitable and effective technique which fulfills the requirements to evaluate theperformance and QoS of networks. To simulate a single congested link, simulation is run with asingle load generator while for a larger simulation with complex traffic, where the nodes are spreadacross different geographical locations generating distributed artificial loads is indispensable. Onesolution is to elaborate a load generation system based on master/slave architecture.
Resumo:
The purpose of this project is to update the tool of Network Traffic Recognition System (NTRS) which is proprietary software of Ericsson AB and Tsinghua University, and to implement the updated tool to finish SIP/VoIP traffic recognition. Basing on the original NTRS, I analyze the traffic recognition principal of NTRS, and redesign the structure and module of the tool according to characteristics of SIP/VoIP traffic, and then finally I program to achieve the upgrade. After the final test with our SIP data trace files in the updated system, a satisfactory result is derived. The result presents that our updated system holds a rate of recognition on a confident level in the SIP session recognition as well as the VoIP call recognition. In the comparison with the software of Wireshark, our updated system has a result which is extremely close to Wireshark’s output, and the working time is much less than Wireshark. In the aspect of practicability, the memory overflow problem is avoided, and the updated system can output the specific information of SIP/VoIP traffic recognition, such as SIP type, SIP state, VoIP state, etc. The upgrade fulfills the demand of this project.
Resumo:
The cost of a road construction over its service life is a function of the design, quality of construction, maintenance strategies and maintenance operations. Unfortunately, designers often neglect a very important aspect which is the possibility to perform future maintenance activities. The focus is mainly on other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This licentiate thesis is a part of a Ph.D. project entitled “Road Design for lower maintenance costs” that aims to examine how the life-cycle costs can be optimized by selection of appropriate geometrical designs for the roads and their components. The result is expected to give a basis for a new method used in the road planning and design process using life-cycle cost analysis with particular emphasis on road maintenance. The project started with a review of literature with the intention to study conditions causing increased needs for road maintenance, the efforts made by the road authorities to satisfy those needs and the improvement potential by consideration of maintenance aspects during planning and design. An investigation was carried out to identify the problems which obstruct due consideration of maintenance aspects during the road planning and design process. This investigation focused mainly on the road planning and design process at the Swedish Road Administration. However, the road planning and design process in Denmark, Finland and Norway were also roughly evaluated to gain a broader knowledge about the research subject. The investigation was carried out in two phases: data collection and data analysis. Data was collected by semi-structured interviews with expert actors involved in planning, design and maintenance and by a review of design-related documents. Data analyses were carried out using a method called “Change Analysis”. This investigation revealed a complex combination of problems which result in inadequate consideration of maintenance aspects. Several urgent needs for changes to eliminate these problems were identified. Another study was carried out to develop a model for calculation of the repair costs for damages of different road barrier types and to analyse how factors such as road type, speed limits, barrier types, barrier placement, type of road section, alignment and seasonal effects affect the barrier damages and the associated repair costs. This study was carried out using a method called the “Case Study Research Method”. Data was collected from 1087 barrier repairs in two regional offices of the Swedish Road Administration, the Central Region and the Western Region. A table was established for both regions containing the repair cost per vehicle kilometre for different combinations of barrier types, road types and speed limits. This table can be used by the designers in the calculation of the life-cycle costs for different road barrier types.
Resumo:
GPS tracking of mobile objects provides spatial and temporal data for a broad range of applications including traffic management and control, transportation routing and planning. Previous transport research has focused on GPS tracking data as an appealing alternative to travel diaries. Moreover, the GPS based data are gradually becoming a cornerstone for real-time traffic management. Tracking data of vehicles from GPS devices are however susceptible to measurement errors – a neglected issue in transport research. By conducting a randomized experiment, we assess the reliability of GPS based traffic data on geographical position, velocity, and altitude for three types of vehicles; bike, car, and bus. We find the geographical positioning reliable, but with an error greater than postulated by the manufacturer and a non-negligible risk for aberrant positioning. Velocity is slightly underestimated, whereas altitude measurements are unreliable.