9 resultados para Topic segmentation

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a new algorithm has been proposed to segment the foreground of the fingerprint from the image under consideration. The algorithm uses three features, mean, variance and coherence. Based on these features, a rule system is built to help the algorithm to efficiently segment the image. In addition, the proposed algorithm combine split and merge with modified Otsu. Both enhancements techniques such as Gaussian filter and histogram equalization are applied to enhance and improve the quality of the image. Finally, a post processing technique is implemented to counter the undesirable effect in the segmented image. Fingerprint recognition system is one of the oldest recognition systems in biometrics techniques. Everyone have a unique and unchangeable fingerprint. Based on this uniqueness and distinctness, fingerprint identification has been used in many applications for a long period. A fingerprint image is a pattern which consists of two regions, foreground and background. The foreground contains all important information needed in the automatic fingerprint recognition systems. However, the background is a noisy region that contributes to the extraction of false minutiae in the system. To avoid the extraction of false minutiae, there are many steps which should be followed such as preprocessing and enhancement. One of these steps is the transformation of the fingerprint image from gray-scale image to black and white image. This transformation is called segmentation or binarization. The aim for fingerprint segmentation is to separate the foreground from the background. Due to the nature of fingerprint image, the segmentation becomes an important and challenging task. The proposed algorithm is applied on FVC2000 database. Manual examinations from human experts show that the proposed algorithm provides an efficient segmentation results. These improved results are demonstrating in diverse experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colour segmentation is the most commonly used method in road signs detection. Road sign contains several basic colours such as red, yellow, blue and white which depends on countries.The objective of this thesis is to do an evaluation of the four colour segmentation algorithms. Dynamic Threshold Algorithm, A Modification of de la Escalera’s Algorithm, the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm. The processing time and segmentation success rate as criteria are used to compare the performance of the four algorithms. And red colour is selected as the target colour to complete the comparison. All the testing images are selected from the Traffic Signs Database of Dalarna University [1] randomly according to the category. These road sign images are taken from a digital camera mounted in a moving car in Sweden.Experiments show that the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm are more accurate and stable to detect red colour of road signs. And the method could also be used in other colours analysis research. The yellow colour which is chosen to evaluate the performance of the four algorithms can reference Master Thesis of Yumei Liu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to present three new methods for color detection and segmentation of road signs. The images are taken by a digital camera mounted in a car. The RGB images are converted into IHLS color space, and new methods are applied to extract the colors of the road signs under consideration. The methods are tested on hundreds of outdoor images in different light conditions, and they show high robustness. This project is part of the research taking place in Dalarna University / Sweden in the field of the ITS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we discuss ellipsis as an interactive strategy by analysing the author’s textchat corpus and the VOICE corpus of English as a Lingua Franca. It is found that there were fewer repetitions in the textchat data, and this is explained as a consequence of the textchat mode. Textchat contributions are preserved as long as the chat is active or has been saved, and therefore users can scroll through and review the discussion, compared to the more fleeting nature of oral conversation. As a result, repetition is less necessary. The frequency of other functions identified could be attributed to the topic of discourse. Discussions involve much ellipsis used to develop discourse, although some were self-presentations with repetition used to confirm details. Back-channel support and comments were often low because speakers instead used forms like yeah as supportive utterances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the second half of 1990s, the economic impact of sports mega-events concerned the researchers, the public and the professionals. The investment of public funds and the effects on several sectors of the economy motivate the economic impact studies. The economic impact of the FIS Nordic World Ski Championship Falun 2015 to the region of Dalarna is the topic of this thesis. This requires the calculation of direct, indirect and induced economic impact. Within the analysis, data from a questionnaire survey conducted on seven different days during the event are used. The final sample of the analysis contains 893 observations. The segmentation approach was applied for the calculations and the visitors were classified regarding their choice of accommodation. The regional economic impact is calculated at 321 M SEK and the employment effect on the tourism sector is estimated. However, the lack of information limits the study. The analysis could be extended with an accurate investigation of certain issues. Further, the impact of the event should be estimated from all the perspectives. The organization of sports mega-events creates tangible and intangible effects to the host-city. The thesis reviews literature on the economic impact studies of sports mega-events. The results of the study can be used for a comprehensive analysis of the case study. Further, the professionals of the tourism and the event could be benefited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Twitter System is the biggest social network in the world, and everyday millions of tweets are posted and talked about, expressing various views and opinions. A large variety of research activities have been conducted to study how the opinions can be clustered and analyzed, so that some tendencies can be uncovered. Due to the inherent weaknesses of the tweets - very short texts and very informal styles of writing - it is rather hard to make an investigation of tweet data analysis giving results with good performance and accuracy. In this paper, we intend to attack the problem from another aspect - using a two-layer structure to analyze the twitter data: LDA with topic map modelling. The experimental results demonstrate that this approach shows a progress in twitter data analysis. However, more experiments with this method are expected in order to ensure that the accurate analytic results can be maintained.