2 resultados para Thyroid gland function tests.

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To investigate if a home environment test battery can be used to measure effects of Parkinson’s disease (PD) treatment intervention and disease progression. Background Seventy-seven patients diagnosed with advanced PD were recruited in an open longitudinal 36-month study at 10 clinics in Sweden and Norway; 40 of them were treated with levodopa-carbidopa intestinal gel (LCIG) and 37 patients were candidates for switching from oral PD treatment to LCIG. They utilized a mobile device test battery, consisting of self-assessments of symptoms and objective measures of motor function through a set of fine motor tests (tapping and spiral drawings), in their homes. Both the LCIG-naïve and LCIG-non-naïve patients used the test battery four times per day during week-long test periods. Methods Assessments The LCIG-naïve patients used the test battery at baseline (before LCIG), month 0 (first visit; at least 3 months after intraduodenal LCIG), and thereafter quarterly for the first year and biannually for the second and third years. The LCIG-non-naïve patients used the test battery from the first visit, i.e. month 0. Out of the 77 patients, only 65 utilized the test battery; 35 were LCIG-non-naïve and 30 LCIG-naïve. In 20 of the LCIG-naïve patients, assessments with the test battery were available during oral treatment and at least one test period after having started infusion treatment. Three LCIG-naïve patients did not use the test battery at baseline but had at least one test period of assessments thereafter. Hence, n=23 in the LCIG-naïve group. In total, symptom assessments in the full sample (including both patient groups) were collected during 379 test periods and 10079 test occasions. For 369 of these test periods, clinical assessments including UPDRS and PDQ-39 were performed in afternoons at the start of the test periods. The repeated measurements of the test battery were processed and summarized into scores representing patients’ symptom severities over a test period, using statistical methods. Six conceptual dimensions were defined; four subjectively-reported: ‘walking’, ‘satisfied’, ‘dyskinesia’, and ‘off’ and two objectively-measured: ‘tapping’ and ‘spiral’. In addition, an ‘overall test score’ (OTS) was defined to represent the global health condition of the patient during a test period. Statistical methods Change in the test battery scores over time, that is at baseline and follow-up test periods, was assessed with linear mixed-effects models with patient ID as a random effect and test period as a fixed effect of interest. The within-patient variability of OTS was assessed using intra-class correlation coefficient (ICC), for the two patient groups. Correlations between clinical rating scores and test battery scores were assessed using Spearman’s rank correlations (rho). Results In LCIG-naïve patients, mean OTS compared to baseline was significantly improved from the first test period on LCIG treatment until month 24. However, there were no significant changes in mean OTS scores of LCIG-non-naïve patients, except for worse mean OTS at month 36 (p<0.01, n=16). The mean scores of all subjectively-reported dimensions improved significantly throughout the course of the study, except ‘walking’ at month 36 (p=0.41, n=4). However, there were no significant differences in mean scores of objectively-measured dimensions between baseline and other test periods, except improved ‘tapping’ at month 6 and month 36, and ‘spiral’ at month 3 (p<0.05). The LCIG-naïve patients had a higher within-subject variability in their OTS scores (ICC=0.67) compared to LCIG-non-naïve patients (ICC=0.71). The OTS correlated adequately with total UPDRS (rho=0.59) and total PDQ-39 (rho=0.59). Conclusions In this 3-year follow-up study of advanced PD patients treated with LCIG we found that it is possible to monitor PD progression over time using a home environment test battery. The significant improvements in the mean OTS scores indicate that the test battery is able to measure functional improvement with LCIG sustained over at least 24 months.