2 resultados para The Inclusive Community Building Ellison Model
em Dalarna University College Electronic Archive
Resumo:
E-learning has become one of the primary ways of delivering education around the globe. In Somalia, which is a country torn within and from the global community by a prolonged civil war, University of Hargeisa has in collaboration with Dalarna University in Sweden adopted, for the first time, e-learning. This study explores barriers and facilitators to e-learning usage, experienced by students in Somalia’s higher education, using the University of Hargeisa as case study. Interviews were conducted with students to explore how University of Hargeisa’s novice users perceived elearning, and what factors positively and negatively affected their e-learning experiences. The Unified Theory of Acceptance and Use of Technology (UTAUT) model was used as a framework for interpreting the results. The findings show that, in general, the students have a very positive attitude towards e-learning, and they perceived that e-learning enhanced their educational experience. The communication aspect was found to be especially important for Somali students, as it facilitated a feeling of belonging to the global community of students and scholars and alleviated the war-torn country’s isolation. However, some socio-cultural aspects of students’ communities negatively affected their e-learning experience. This study ends with recommendations based on the empirical findings to promote the use and enhance the experience of e-learning in post conflict Somali educational institutions
Resumo:
Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment. The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods. The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations. The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer. The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building. Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.