3 resultados para Test procedures
em Dalarna University College Electronic Archive
Resumo:
Dynamic system test methods for heating systems were developed and applied by the institutes SERC and SP from Sweden, INES from France and SPF from Switzerland already before the MacSheep project started. These test methods followed the same principle: a complete heating system – including heat generators, storage, control etc., is installed on the test rig; the test rig software and hardware simulates and emulates the heat load for space heating and domestic hot water of a single family house, while the unit under test has to act autonomously to cover the heat demand during a representative test cycle. Within the work package 2 of the MacSheep project these similar – but different – test methods were harmonized and improved. The work undertaken includes: • Harmonization of the physical boundaries of the unit under test. • Harmonization of the boundary conditions of climate and load. • Definition of an approach to reach identical space heat load in combination with an autonomous control of the space heat distribution by the unit under test. • Derivation and validation of new six day and a twelve day test profiles for direct extrapolation of test results. The new harmonized test method combines the advantages of the different methods that existed before the MacSheep project. The new method is a benchmark test, which means that the load for space heating and domestic hot water preparation will be identical for all tested systems, and that the result is representative for the performance of the system over a whole year. Thus, no modelling and simulation of the tested system is needed in order to obtain the benchmark results for a yearly cycle. The method is thus also applicable to products for which simulation models are not available yet. Some of the advantages of the new whole system test method and performance rating compared to the testing and energy rating of single components are: • Interaction between the different components of a heating system, e.g. storage, solar collector circuit, heat pump, control, etc. are included and evaluated in this test. • Dynamic effects are included and influence the result just as they influence the annual performance in the field. • Heat losses are influencing the results in a more realistic way, since they are evaluated under "real installed" and representative part-load conditions rather than under single component steady state conditions. The described method is also suited for the development process of new systems, where it replaces time-consuming and costly field testing with the advantage of a higher accuracy of the measured data (compared to the typically used measurement equipment in field tests) and identical, thus comparable boundary conditions. Thus, the method can be used for system optimization in the test bench under realistic operative conditions, i.e. under relevant operating environment in the lab. This report describes the physical boundaries of the tested systems, as well as the test procedures and the requirements for both the unit under test and the test facility. The new six day and twelve day test profiles are also described as are the validation results.
Resumo:
A test and demonstration facility for PV and PV hybrid systems and system components has been designed and installed at Dalarna University in Sweden. The facility allows studies of complete PV systems or single components in a range of 0.1-10 kW. The facility includes two grid-connected PV systems, a PV Hybrid off-grid system, three emulators and the necessary measurement and control equipment. Tests can be done manually or automatically through programmed test procedures controlled that will be implemented in Labview. The facility shall be used by researchers, professionals of the industry and engineering students.
Resumo:
The World Health Organisation suggests that simplification of the medical abortion regime will contribute to an increased acceptability of medical abortion, among women as well as providers. It is expected that a home-based follow-up after a medical abortion will increase the willingness to opt for medical abortion as well as decrease the workload and service costs in the clinic. Trial design The study is a randomised, controlled, non-superiority trial . Methods Women screened to participate in the study are those with unwanted pregnancies and gestational ages equal to or less than nine weeks. Eligible women randomised to the home-based assessment group will use a low-sensitivity pregnancy test and a pictorial instruction sheet at home, while the women in the clinic follow-up group will return to the clinic for routine follow-up carried out by a doctor. The primary objective of the study is to evaluate the effectiveness of home-based assessment using a low-sensitivity pregnancy test and a pictorial instruction sheet 10-14 days after an early medical abortion. Providers or research assistants will not be blinded during outcome assessment. To ensure feasibility of the self-assessment intervention an adaption phase took place at the selected study sites before study initiation. This was to optimise and tailor-make the intervention and the study procedures and resulted in the development of the pictorial instruction sheet for how to use the low-sensitivity pregnancy test and the danger signs after a medical abortion. Discussion In this paper, we will describe the study protocol for a randomised control trial investigating the efficacy of simplified follow-up in terms of home-based assessment, 10-14 days after a medical abortion. Moreover, a description of the adaptation phase is included for a better understanding of the implementation of the intervention in a setting where literacy is low and the road-connections are poor. Trial registration: Clinicaltrials.gov NCT01827995. Registered 04 May 2013