5 resultados para Television -- Antennas -- Design and construction -- Data processing

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GPS technology has been embedded into portable, low-cost electronic devices nowadays to track the movements of mobile objects. This implication has greatly impacted the transportation field by creating a novel and rich source of traffic data on the road network. Although the promise offered by GPS devices to overcome problems like underreporting, respondent fatigue, inaccuracies and other human errors in data collection is significant; the technology is still relatively new that it raises many issues for potential users. These issues tend to revolve around the following areas: reliability, data processing and the related application. This thesis aims to study the GPS tracking form the methodological, technical and practical aspects. It first evaluates the reliability of GPS based traffic data based on data from an experiment containing three different traffic modes (car, bike and bus) traveling along the road network. It then outline the general procedure for processing GPS tracking data and discuss related issues that are uncovered by using real-world GPS tracking data of 316 cars. Thirdly, it investigates the influence of road network density in finding optimal location for enhancing travel efficiency and decreasing travel cost. The results show that the geographical positioning is reliable. Velocity is slightly underestimated, whereas altitude measurements are unreliable.Post processing techniques with auxiliary information is found necessary and important when solving the inaccuracy of GPS data. The densities of the road network influence the finding of optimal locations. The influence will stabilize at a certain level and do not deteriorate when the node density is higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the industrial processes of sheet metal manufacturing and refining, shear cutting is widely used for its speed and cost advantages over competing cutting methods. Industrial shears may include some force measurement possibilities, but the force is most likely influenced by friction losses between shear tool and the point of measurement, and are in general not showing the actual force applied to the sheet. Well defined shears and accurate measurements of force and shear tool position are important for understanding the influence of shear parameters. Accurate experimental data are also necessary for calibration of numerical shear models. Here, a dedicated laboratory set-up with well defined geometry and movement in the shear, and high measurability in terms of force and geometry is designed, built and verified. Parameters important to the shear process are studied with perturbation analysis techniques and requirements on input parameter accuracy are formulated to meet experimental output demands. Input parameters in shearing are mostly geometric parameters, but also material properties and contact conditions. Based on the accuracy requirements, a symmetric experiment with internal balancing of forces is constructed to avoid guides and corresponding friction losses. Finally, the experimental procedure is validated through shearing of a medium grade steel. With the obtained experimental set-up performance, force changes as result of changes in studied input parameters are distinguishable down to a level of 1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main aims of this thesis is to design an optimized commercial Photovoltaic (PV) system in Barbados from several variables such as racking type, module type and inverter type based on practicality, technical performance as well as financial returns to the client. Detailed simulations are done in PVSYST and financial models are used to compare different systems and their viability. Once the preeminent system is determined from a financial and performance perspective a detailed design is done using PVSYST and AutoCAD to design the most optimal PV system for the customer. In doing so, suitable engineering drawings are generated which are detailed enough for construction of the system. Detailed cost with quotes from relevant manufacturers, suppliers and estimators become instrumental in determining Balance of System Costs in addition to total project cost. The final simulated system is suggested with a PV capacity of 425kW and an inverter output of 300kW resulting in an array oversizing of 1.42. The PV system has a weighted Performance Ratio of 77 %, a specific yield of 1467 kWh/kWp and a projected annual production of 624 MWh/yr. This system is estimated to offset approximately 28 % of Carlton’s electrical load annually. Over the course of 20 years the PV system is projected to produce electricity at a cost of $0.201USD/kWh which is significantly lower than the $0.35 USD/kWh paid to the utility at the time of writing this thesis. Due to the high cost of electricity on the island, an attractive Feed-In-Tariff is not necessary to warrant the installation of a commercial System which over a lifetime which produces electricity at less than 60% of the cost to the user purchasing electricity from the utility. A simple payback period of 5.4 years, a return on investment of 17 % without incentives, in addition to an estimated diversion of 6840 barrels of oil or 2168 tonnes of CO2 further provides compelling justification for the installation of a commercial Photovoltaic System not only on Carlton A-1 Supermarket, but also island wide as well as regionally where most electricity supplies are from imported fossil fuels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the adaptation of formal education to people’s technology- use patterns, theirtechnology-in-practice, where the ubiquitous use of mobile technologies is central. The research question is: How can language learning practices occuring in informal learning environments be effectively integrated with formal education through the use of mobile technology? The study investigates the technical, pedagogical, social and cultural challenges involved in a design science approach. The thesis consists of four studies. The first study systematises MALL (mobile-assisted language learning) research. The second investigates Swedish and Chinese students’ attitudes towards the use of mobile technology in education. The third examines students’ use of technology in an online language course, with a specific focus on their learning practices in informal learning contexts and their understanding of how this use guides their learning. Based on the findings, a specifically designed MALL application was built and used in two courses. Study four analyses the app use in terms of students’ perceived level of self-regulation and structuration. The studies show that technology itself plays a very important role in reshaping peoples’ attitudes and that new learning methods are coconstructed in a sociotechnical system. Technology’s influence on student practices is equally strong across borders. Students’ established technologies-in-practice guide the ways they approach learning. Hence, designing effective online distance education involves three interrelated elements: technology, information, and social arrangements. This thesis contributes to mobile learning research by offering empirically and theoretically grounded insights that shift the focus from technology design to design of information systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shearing is the process where sheet metal is mechanically cut between two tools. Various shearing technologies are commonly used in the sheet metal industry, for example, in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material. The constant development of sheet metals toward higher strength and formability leads to increased forces on the shearing equipment and tools. Shearing of new sheet materials imply new suitable shearing parameters. Investigations of the shearing parameters through live tests in the production are expensive and separate experiments are time consuming and requires specialized equipment. Studies involving a large number of parameters and coupled effects are therefore preferably performed by finite element based simulations. Accurate experimental data is still a prerequisite to validate such simulations. There is, however, a shortage of accurate experimental data to validate such simulations. In industrial shearing processes, measured forces are always larger than the actual forces acting on the sheet, due to friction losses. Shearing also generates a force that attempts to separate the two tools with changed shearing conditions through increased clearance between the tools as result. Tool clearance is also the most common shearing parameter to adjust, depending on material grade and sheet thickness, to moderate the required force and to control the final sheared edge geometry. In this work, an experimental procedure that provides a stable tool clearance together with accurate measurements of tool forces and tool displacements, was designed, built and evaluated. Important shearing parameters and demands on the experimental set-up were identified in a sensitivity analysis performed with finite element simulations under the assumption of plane strain. With respect to large tool clearance stability and accurate force measurements, a symmetric experiment with two simultaneous shears and internal balancing of forces attempting to separate the tools was constructed. Steel sheets of different strength levels were sheared using the above mentioned experimental set-up, with various tool clearances, sheet clamping and rake angles. Results showed that tool penetration before fracture decreased with increased material strength. When one side of the sheet was left unclamped and free to move, the required shearing force decreased but instead the force attempting to separate the two tools increased. Further, the maximum shearing force decreased and the rollover increased with increased tool clearance. Digital image correlation was applied to measure strains on the sheet surface. The obtained strain fields, together with a material model, were used to compute the stress state in the sheet. A comparison, up to crack initiation, of these experimental results with corresponding results from finite element simulations in three dimensions and at a plane strain approximation showed that effective strains on the surface are representative also for the bulk material. A simple model was successfully applied to calculate the tool forces in shearing with angled tools from forces measured with parallel tools. These results suggest that, with respect to tool forces, a plane strain approximation is valid also at angled tools, at least for small rake angles. In general terms, this study provide a stable symmetric experimental set-up with internal balancing of lateral forces, for accurate measurements of tool forces, tool displacements, and sheet deformations, to study the effects of important shearing parameters. The results give further insight to the strain and stress conditions at crack initiation during shearing, and can also be used to validate models of the shearing process.