8 resultados para Team Evaluation Models
em Dalarna University College Electronic Archive
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB).IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth datatransmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] First, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one incontinuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be include CAC, traffic policing used for traffic control.QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator andanalytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and indentify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20 % without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught.
Resumo:
Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
BACKGROUND: Annually, 2.8 million neonatal deaths occur worldwide, despite the fact that three-quarters of them could be prevented if available evidence-based interventions were used. Facilitation of community groups has been recognized as a promising method to translate knowledge into practice. In northern Vietnam, the Neonatal Health - Knowledge Into Practice trial evaluated facilitation of community groups (2008-2011) and succeeded in reducing the neonatal mortality rate (adjusted odds ratio, 0.51; 95 % confidence interval 0.30-0.89). The aim of this paper is to report on the process (implementation and mechanism of impact) of this intervention. METHODS: Process data were excerpted from diary information from meetings with facilitators and intervention groups, and from supervisor records of monthly meetings with facilitators. Data were analyzed using descriptive statistics. An evaluation including attributes and skills of facilitators (e.g., group management, communication, and commitment) was performed at the end of the intervention using a six-item instrument. Odds ratios were analyzed, adjusted for cluster randomization using general linear mixed models. RESULTS: To ensure eight active facilitators over 3 years, 11 Women's Union representatives were recruited and trained. Of the 44 intervention groups, composed of health staff and commune stakeholders, 43 completed their activities until the end of the study. In total, 95 % (n = 1508) of the intended monthly meetings with an intervention group and a facilitator were conducted. The overall attendance of intervention group members was 86 %. The groups identified 32 unique problems and implemented 39 unique actions. The identified problems targeted health issues concerning both women and neonates. Actions implemented were mainly communication activities. Communes supported by a group with a facilitator who was rated high on attributes and skills (n = 27) had lower odds of neonatal mortality (odds ratio, 0.37; 95 % confidence interval, 0.19-0.73) than control communes (n = 46). CONCLUSIONS: This evaluation identified several factors that might have influenced the outcomes of the trial: continuity of intervention groups' work, adequate attributes and skills of facilitators, and targeting problems along a continuum of care. Such factors are important to consider in scaling-up efforts.