4 resultados para T-Kernel
em Dalarna University College Electronic Archive
Resumo:
Since last two decades researches have been working on developing systems that can assistsdrivers in the best way possible and make driving safe. Computer vision has played a crucialpart in design of these systems. With the introduction of vision techniques variousautonomous and robust real-time traffic automation systems have been designed such asTraffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among theseautomatic detection and recognition of road signs has became an interesting research topic.The system can assist drivers about signs they don’t recognize before passing them.Aim of this research project is to present an Intelligent Road Sign Recognition System basedon state-of-the-art technique, the Support Vector Machine. The project is an extension to thework done at ITS research Platform at Dalarna University [25]. Focus of this research work ison the recognition of road signs under analysis. When classifying an image its location, sizeand orientation in the image plane are its irrelevant features and one way to get rid of thisambiguity is to extract those features which are invariant under the above mentionedtransformation. These invariant features are then used in Support Vector Machine forclassification. Support Vector Machine is a supervised learning machine that solves problemin higher dimension with the help of Kernel functions and is best know for classificationproblems.
Resumo:
Att kunna gör en effektiv undersökning av det flyktiga minnet är något som blir viktigare ochviktigare i IT-forensiska utredningar. Dels under Linux och Windows baserade PC installationermen också för mobila enheter i form av Android och enheter baserade andra mobila opperativsy-stem.Android använder sig av en modifierad Linux-kärna var modifikationer är för att anpassa kärnantill de speciella krav som gäller för ett mobilt operativsystem. Dessa modifikationer innefattardels meddelandehantering mellan processer men även ändringar till hur internminnet hanteras ochövervakas.Då dessa två kärnor är så pass nära besläktade kan samma grundläggande principer användas föratt dumpa och undersöka minne. Dumpningen sker via en kärn-modul vilket i den här rapportenutgörs av en programvara vid namn LiME vilken kan hantera bägge kärnorna.Analys av minnet kräver att verktygen som används har en förståelse för minneslayouten i fråga.Beroende på vilken metod verktyget använder så kan det även behövas information om olika sym-boler. Verktyget som används i det här examensarbetet heter Volatility och klarar på papperet avatt extrahera all den information som behövs för att kunna göra en korrekt undersökning.Arbetet avsåg att vidareutveckla existerande metoder för analys av det flyktiga minnet på Linux-baserade maskiner (PC) och inbyggda system(Android). Problem uppstod då undersökning avflyktigt minne på Android och satta mål kunde inte uppnås fullt ut. Det visade sig att minnesanalysriktat emot PC-plattformen är både enklare och smidigare än vad det är mot Android.
Resumo:
The FE ('fixed effects') estimator of technical inefficiency performs poorly when N ('number of firms') is large and T ('number of time observations') is small. We propose estimators of both the firm effects and the inefficiencies, which have small sample gains compared to the traditional FE estimator. The estimators are based on nonparametric kernel regression of unordered variables, which includes the FE estimator as a special case. In terms of global conditional MSE ('mean square error') criterions, it is proved that there are kernel estimators which are efficient to the FE estimators of firm effects and inefficiencies, in finite samples. Monte Carlo simulations supports our theoretical findings and in an empirical example it is shown how the traditional FE estimator and the proposed kernel FE estimator lead to very different conclusions about inefficiency of Indonesian rice farmers.
Resumo:
This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.