5 resultados para T S fuzzy system
em Dalarna University College Electronic Archive
Resumo:
The aim of this work is to evaluate the fuzzy system for different types of patients for levodopa infusion in Parkinson Disease based on simulation experiments using the pharmacokinetic-pharmacodynamic model. Fuzzy system is to control patient’s condition by adjusting the value of flow rate, and it must be effective on three types of patients, there are three different types of patients, including sensitive, typical and tolerant patient; the sensitive patients are very sensitive to drug dosage, but the tolerant patients are resistant to drug dose, so it is important for controller to deal with dose increment and decrement to adapt different types of patients, such as sensitive and tolerant patients. Using the fuzzy system, three different types of patients can get useful control for simulating medication treatment, and controller will get good effect for patients, when the initial flow rate of infusion is in the small range of the approximate optimal value for the current patient’ type.
Resumo:
A decision support system (DSS) was implemented based on a fuzzy logic inference system (FIS) to provide assistance in dose alteration of Duodopa infusion in patients with advanced Parkinson’s disease, using data from motor state assessments and dosage. Three-tier architecture with an object oriented approach was used. The DSS has a web enabled graphical user interface that presents alerts indicating non optimal dosage and states, new recommendations, namely typical advice with typical dose and statistical measurements. One data set was used for design and tuning of the FIS and another data set was used for evaluating performance compared with actual given dose. Overall goodness-of-fit for the new patients (design data) was 0.65 and for the ongoing patients (evaluation data) 0.98. User evaluation is now ongoing. The system could work as an assistant to clinical staff for Duodopa treatment in advanced Parkinson’s disease.
Resumo:
The purpose of this work is to develop a web based decision support system, based onfuzzy logic, to assess the motor state of Parkinson patients on their performance in onscreenmotor tests in a test battery on a hand computer. A set of well defined rules, basedon an expert’s knowledge, were made to diagnose the current state of the patient. At theend of a period, an overall score is calculated which represents the overall state of thepatient during the period. Acceptability of the rules is based on the absolute differencebetween patient’s own assessment of his condition and the diagnosed state. Anyinconsistency can be tracked by highlighted as an alert in the system. Graphicalpresentation of data aims at enhanced analysis of patient’s state and performancemonitoring by the clinic staff. In general, the system is beneficial for the clinic staff,patients, project managers and researchers.
Resumo:
This report presents a new way of control engineering. Dc motor speed controlled by three controllers PID, pole placement and Fuzzy controller and discusses the advantages and disadvantages of each controller for different conditions under loaded and unloaded scenarios using software Matlab. The brushless series wound Dc motor is very popular in industrial application and control systems because of the high torque density, high efficiency and small size. First suitable equations are developed for DC motor. PID controller is developed and tuned in order to get faster step response. The simulation results of PID controller provide very good results and the controller is further tuned in order to decrease its overshoot error which is common in PID controllers. Further it is purposed that in industrial environment these controllers are better than others controllers as PID controllers are easy to tuned and cheap. Pole placement controller is the best example of control engineering. An addition of integrator reduced the noise disturbances in pole placement controller and this makes it a good choice for industrial applications. The fuzzy controller is introduce with a DC chopper to make the DC motor speed control smooth and almost no steady state error is observed. Another advantage is achieved in fuzzy controller that the simulations of three different controllers are compared and concluded from the results that Fuzzy controller outperforms to PID controller in terms of steady state error and smooth step response. While Pole placement controller have no comparison in terms of controls because designer can change the step response according to nature of control systems, so this controller provide wide range of control over a system. Poles location change the step response in a sense that if poles are near to origin then step response of motor is fast. Finally a GUI of these three controllers are developed which allow the user to select any controller and change its parameters according to the situation.
Resumo:
The Intelligent Algorithm is designed for theusing a Battery source. The main function is to automate the Hybrid System through anintelligent Algorithm so that it takes the decision according to the environmental conditionsfor utilizing the Photovoltaic/Solar Energy and in the absence of this, Fuel Cell energy isused. To enhance the performance of the Fuel Cell and Photovoltaic Cell we used batterybank which acts like a buffer and supply the current continuous to the load. To develop the main System whlogic based controller was used. Fuzzy Logic based controller used to develop this system,because they are chosen to be feasible for both controlling the decision process and predictingthe availability of the available energy on the basis of current Photovoltaic and Battery conditions. The Intelligent Algorithm is designed to optimize the performance of the system and to selectthe best available energy source(s) in regard of the input parameters. The enhance function of these Intelligent Controller is to predict the use of available energy resources and turn on thatparticular source for efficient energy utilization. A fuzzy controller was chosen to take thedecisions for the efficient energy utilization from the given resources. The fuzzy logic basedcontroller is designed in the Matlab-Simulink environment. Initially, the fuzzy based ruleswere built. Then MATLAB based simulation system was designed and implemented. Thenthis whole proposed model is simulated and tested for the accuracy of design and performanceof the system.