9 resultados para System verification and analysis
em Dalarna University College Electronic Archive
Resumo:
This study aims to investigate the important indicators that contribute to happiness among Beijing residence. The residents of Beijing were taken as the target population for the survey. A questionnaire was used as the main statistical instrument to collect the data from the residents in Beijing. In so doing the investigation employs Factor analyses and chi-square analyses as the main statistical tools used for the analyses in this research. The study found that Beijing residents gained greater happiness in the family, interpersonal relationships, and health status. The analysis also shows that generally, the residence of Beijing feels happier and also in terms of gender basis, females in Beijing feel happier as compare to their male counterpart. It will find that gender, age and education are statistically significant when dealing with happiness.
Resumo:
An international standard, ISO/DP 9459-4 has been proposed to establish a uniform standard of quality for small, factory-made solar heating systerns. In this proposal, system components are tested separatelyand total system performance is calculated using system simulations based on component model parameter values validated using the results from the component tests. Another approach is to test the whole system in operation under representative conditions, where the results can be used as a measure of the general system performance. The advantage of system testing of this form is that it is not dependent on simulations and the possible inaccuracies of the models. Its disadvantage is that it is restricted to the boundary conditions for the test. Component testing and system simulation is flexible, but requires an accurate and reliable simulation model.The heat store is a key component conceming system performance. Thus, this work focuses on the storage system consisting store, electrical auxiliary heater, heat exchangers and tempering valve. Four different storage system configurations with a volume of 750 litre were tested in an indoor system test using a six -day test sequence. A store component test and system simulation was carried out on one of the four configurations, applying the proposed standard for stores, ISO/DP 9459-4A. Three newly developed test sequences for intemalload side heat exchangers, not in the proposed ISO standard, were also carried out. The MULTIPORT store model was used for this work. This paper discusses the results of the indoor system test, the store component test, the validation of the store model parameter values and the system simulations.
Resumo:
In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.
Resumo:
Product verifications have become a cost-intensive and time-consuming aspect of modern electronics production, but with the onset of an ever-increasing miniaturisation, these aspects will become even more cumbersome. One may also go as far as to point out that certain precision assembly, such as within the biomedical sector, is legally bound to have 0 defects within production. Since miniaturisation and precision assembly will soon become a part of almost any product, the verifications phases of assembly need to be optimised in both functionality and cost. Another aspect relates to the stability and robustness of processes, a pre-requisite for flexibility. Furthermore, as the re-engineering cycle becomes ever more important, all information gathered within the ongoing process becomes vital. In view of these points, product, or process verification may be assumed to be an important and integral part of precision assembly. In this paper, product verification is defined as the process of determining whether or not the products, at a given phase in the life-cycle, fulfil the established specifications. Since the product is given its final form and function in the assembly, the product verification normally takes place somewhere in the assembly line which is the focus for this paper.
Resumo:
This report contains a suggestion for a simple monitoring and evaluation guideline for PV-diesel hybrid systems. It offers system users a way to better understand if their system is operated in a way that will make it last for a long time. It also gives suggestions on how to act if there are signs of unfavourable use or failure. The application of the guide requires little technical equipment, but daily manual measurements. For the most part, it can be managed by pen and paper, by people with no earlier experience of power systems.The guide is structured and expressed in a way that targets PV-diesel hybrid system users with no, or limited, earlier experience of power engineering. It is less detailed in terms of motivations for certain choices and limitations, but rich in details concerning calculations, evaluation procedures and maintenance routines. A more scientific description of the guide can be found in a related journal article.
Resumo:
Background: The gap between what is known and what is practiced results in health service users not benefitting from advances in healthcare, and in unnecessary costs. A supportive context is considered a key element for successful implementation of evidence-based practices (EBP). There were no tools available for the systematic mapping of aspects of organizational context influencing the implementation of EBPs in low- and middle-income countries (LMICs). Thus, this project aimed to develop and psychometrically validate a tool for this purpose. Methods: The development of the Context Assessment for Community Health (COACH) tool was premised on the context dimension in the Promoting Action on Research Implementation in Health Services framework, and is a derivative product of the Alberta Context Tool. Its development was undertaken in Bangladesh, Vietnam, Uganda, South Africa and Nicaragua in six phases: (1) defining dimensions and draft tool development, (2) content validity amongst in-country expert panels, (3) content validity amongst international experts, (4) response process validity, (5) translation and (6) evaluation of psychometric properties amongst 690 health workers in the five countries. Results: The tool was validated for use amongst physicians, nurse/midwives and community health workers. The six phases of development resulted in a good fit between the theoretical dimensions of the COACH tool and its psychometric properties. The tool has 49 items measuring eight aspects of context: Resources, Community engagement, Commitment to work, Informal payment, Leadership, Work culture, Monitoring services for action and Sources of knowledge. Conclusions: Aspects of organizational context that were identified as influencing the implementation of EBPs in high-income settings were also found to be relevant in LMICs. However, there were additional aspects of context of relevance in LMICs specifically Resources, Community engagement, Commitment to work and Informal payment. Use of the COACH tool will allow for systematic description of the local healthcare context prior implementing healthcare interventions to allow for tailoring implementation strategies or as part of the evaluation of implementing healthcare interventions and thus allow for deeper insights into the process of implementing EBPs in LMICs.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
In Sweden, 90% of the solar heating systems are solar domestic hot water and heating systems (SDHW&H), so called combisystems. These generally supply most of the domestic hot water needs during the summer and have enough capacity to supply some energy to the heating system during spring and autumn. This paper describes a standard Swedish combisystem and how the output from it varies with heating load, climate within Sweden, and how it can be increased with improved system design. A base case is defined using the standard combi- system, a modern Swedish single family house and the climate of Stockholm. Using the simulation program Trnsys, parametric studies have been performed on the base case and improved system designs. The solar fraction could be increased from 17.1% for the base case to 22.6% for the best system design, given the same system size, collector type and load. A short analysis of the costs of changed system design is given, showing that payback times for additional investment are from 5-8 years. Measurements on system components in the laboratory have been used to verify the simulation models used. More work is being carried out in order to find even better system designs, and further improvements in system performance are expected.
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.