1 resultado para Symptom Clusters
em Dalarna University College Electronic Archive
Filtro por publicador
- Aberdeen University (3)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (10)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (15)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (90)
- Boston University Digital Common (2)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (18)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (4)
- Cámara de Comercio de Bogotá, Colombia (2)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (48)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (111)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (7)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (4)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (6)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (11)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (58)
- Instituto Politécnico de Bragança (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (7)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memoria Académica - FaHCE, UNLP - Argentina (10)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (17)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (63)
- Queensland University of Technology - ePrints Archive (72)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (11)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (10)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- Repositorio Institucional Universidad de Medellín (2)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (17)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (33)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.