2 resultados para Sustainability, Transit Oriented Development, TOD, South East Queensland, Planning
em Dalarna University College Electronic Archive
Resumo:
Some 50% of the people in the world live in rural areas, often under harsh conditions and in poverty. The need for knowledge of how to improve living conditions is well documented. In response to this need, new knowledge of how to improve living conditions in rural areas and elsewhere is continuously being developed by researchers and practitioners around the world. People in rural areas, in particular, would certainly benefit from being able to share relevant knowledge with each other, as well as with stakeholders (e.g. researchers) and other organizations (e.g. NGOs). Central to knowledge management is the idea of knowledge sharing. This study is based on the assumption that knowledge management can support sustainable development in rural and remote regions. It aims to present a framework for knowledge management in sustainable rural development, and an inventory of existing frameworks for that. The study is interpretive, with interviews as the primary source for the inventory of stakeholders, knowledge categories and Information and Communications Technology (ICT) infrastructure. For the inventory of frameworks, a literature study was carried out. The result is a categorization of the stakeholders who act as producers and beneficiaries of explicit and indigenous development knowledge. Stakeholders are local government, local population, academia, NGOs, civil society and donor agencies. Furthermore, the study presents a categorization of the development knowledge produced by the stakeholders together with specifications for the existing ICT infrastructure. Rural development categories found are research, funding, agriculture, ICT, gender, institutional development, local infrastructure development, and marketing & enterprise. Finally, a compiled framework is presented, and it is based on ten existing frameworks for rural development that were found in the literature study, and the empirical findings of the Gilgit-Baltistan case. Our proposed framework is divided in four levels where level one consists of the identified stakeholders, level two consists of rural development categories, level three of the knowledge management system and level four of sustainable rural development based on the levels below. In the proposed framework we claim that the sustainability of rural development can be achieved through a knowledge society in which knowledge of the rural development process is shared among all relevant stakeholders.
Resumo:
Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.