3 resultados para Supporting methodology
em Dalarna University College Electronic Archive
Resumo:
In this project, two broad facets in the design of a methodology for performance optimization of indexable carbide inserts were examined. They were physical destructive testing and software simulation.For the physical testing, statistical research techniques were used for the design of the methodology. A five step method which began with Problem definition, through System identification, Statistical model formation, Data collection and Statistical analyses and results was indepthly elaborated upon. Set-up and execution of an experiment with a compression machine together with roadblocks and possible solution to curb road blocks to quality data collection were examined. 2k factorial design was illustrated and recommended for process improvement. Instances of first-order and second-order response surface analyses were encountered. In the case of curvature, test for curvature significance with center point analysis was recommended. Process optimization with method of steepest ascent and central composite design or process robustness studies of response surface analyses were also recommended.For the simulation test, AdvantEdge program was identified as the most used software for tool development. Challenges to the efficient application of this software were identified and possible solutions proposed. In conclusion, software simulation and physical testing were recommended to meet the objective of the project.
Methodology for identifying parameters for the TRNSYS model Type 210 -wood pellet stoves and boilers
Resumo:
This report describes a method how to perform measurements on boilers and stoves and how to identify parameters from the measurements for the boiler/stove-model TRNSYS Type 210. The model can be used for detailed annual system simulations using TRNSYS. Experience from measurements on three different pellet stoves and four boilers were used to develop this methodology. Recommendations for the set up of measurements are given and the re-quired combustion theory for the data evaluation and data preparation are given. The data evalua-tion showed that the uncertainties are quite large for the measured flue gas flow rate and for boilers and stoves with high fraction of energy going to the water jacket also the calculated heat rate to the room may have large uncertainties. A methodology for the parameter identification process and identified parameters for two different stoves and three boilers are given. Finally the identified models are compared with measured data showing that the model generally agreed well with meas-ured data during both stationary and dynamic conditions.
Resumo:
The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections