4 resultados para Supervised and Unsupervised Classification
em Dalarna University College Electronic Archive
Resumo:
Recommendation systems aim to help users make decisions more efficiently. The most widely used method in recommendation systems is collaborative filtering, of which, a critical step is to analyze a user's preferences and make recommendations of products or services based on similarity analysis with other users' ratings. However, collaborative filtering is less usable for recommendation facing the "cold start" problem, i.e. few comments being given to products or services. To tackle this problem, we propose an improved method that combines collaborative filtering and data classification. We use hotel recommendation data to test the proposed method. The accuracy of the recommendation is determined by the rankings. Evaluations regarding the accuracies of Top-3 and Top-10 recommendation lists using the 10-fold cross-validation method and ROC curves are conducted. The results show that the Top-3 hotel recommendation list proposed by the combined method has the superiority of the recommendation performance than the Top-10 list under the cold start condition in most of the times.
Resumo:
Small-scale enterprises face difficulties in fulfilling the regulations for organising Systematic Work Environment Management. This study compared three groups of small-scale manufacturing enterprises with and without support for implementing the provision. Two implementation methods, supervised and network method, were used. The third group worked according to their own ideas. Twenty-three enterprises participated. The effects of the implementation were evaluated after one year by semi-structured dialogue with the manager and safety representative. Each enterprise was classified on compliance with ten demands concerning the provision. The work environment was estimated by the WEST-method. Impact of the implementation on daily work was also studied. At the follow-up, the enterprises in the supervised method reported slightly more improvements in the fulfilment of the demands in the provision than the enterprises in the network method and the enterprises working on their own did. The effect of the project reached the employees faster in the enterprises with the supervised method. In general, the work environment improved to some extent in all enterprises. Extensive support to small-scale enterprises in terms of advise and networking aimed to fulfil the regulations of Systematic Work Environment Management had limited effect especially considering the cost of applying these methods.
Resumo:
Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and better biological understanding of coronary heart disease (CHD). We performed a mass spectrometry-based non-targeted metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up) with validation in 1,670 individuals (282 events; 3.9 y. median follow-up). Four metabolites were replicated and independent of main cardiovascular risk factors [lysophosphatidylcholine 18∶1 (hazard ratio [HR] per standard deviation [SD] increment = 0.77, P-value<0.001), lysophosphatidylcholine 18∶2 (HR = 0.81, P-value<0.001), monoglyceride 18∶2 (MG 18∶2; HR = 1.18, P-value = 0.011) and sphingomyelin 28∶1 (HR = 0.85, P-value = 0.015)]. Together they contributed to moderate improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%). MG 18∶2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970 participants; a reverse pattern was observed for MG 18∶2. MG 18∶2 showed an enrichment (P-value = 0.002) of significant associations with CHD-associated SNPs (P-value = 1.2×10-7 for association with rs964184 in the ZNF259/APOA5 region) and a weak, but positive causal effect (odds ratio = 1.05 per SD increment in MG 18∶2, P-value = 0.05) on CHD, as suggested by Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.