3 resultados para Strain hardening
em Dalarna University College Electronic Archive
Resumo:
Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s− 1 at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneous and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain.
Undersökning av steady state och utvärdering av valskraft och friktion vid kallvalsning av aluminium
Resumo:
The purpose with this thesis was to examine the cold rolling mill located at Högskolan Dalarna and to stabilize the rolling process, to achieve steady state. Experiments with cold rolling of an aluminium strip have given results for rolling force, friction, reduction, strip tension and strain hardening. Results show that steady state has been found for the experiments with roll force and strain hardening, and not been found for the experiments with friction and reduction. Results show that increased strip tension gives lower roll forces. The roll force equation of Stone shows comparable results with reality for dry contact with reductions up to 30 %, but starts being incomparable with higher reductions. The roll force equation of Stone shows a bit higher roll forces than reality gave, but was comparable within reductions from 13 to 50 %. Experiments have shown that the aluminium strip has gone through strain hardening. Experiments show how the set roll gap did not yield the desired thickness reduction, there for the elastic spring constant for the rolling mill was examined and determined to be 417 N / mm for the specific alloy band. The influence of tension strip for roll force was examined and Results confirm the theory about how the roll force is decreased by increasing tension strip. The work rolls started to slip against the alumina strip as high tension strip; 70 N/mm2, gave low roll force; < 15kN.
Resumo:
A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a non-homogeneity parameter, f(e), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.