6 resultados para Stoves, Gasoline

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study an optimization method for the design of combined solar and pellet heating systems is presented and evaluated. The paper describes the steps of the method by applying it for an example of system. The objective of the optimization was to find the design parameters that give the lowest auxiliary energy (pellet fuel + auxiliary electricity) and carbon monoxide (CO) emissions for a system with a typical load, a single family house in Sweden. Weighting factors have been used for the auxiliary energy use and CO emissions to give a combined target function. Different weighting factors were tested. The results show that extreme weighting factors lead to their own minima. However, it was possible to find factors that ensure low values for both auxiliary energy and CO emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a method how to perform measurements on boilers and stoves and how to identify parameters from the measurements for the boiler/stove-model TRNSYS Type 210. The model can be used for detailed annual system simulations using TRNSYS. Experience from measurements on three different pellet stoves and four boilers were used to develop this methodology. Recommendations for the set up of measurements are given and the re-quired combustion theory for the data evaluation and data preparation are given. The data evalua-tion showed that the uncertainties are quite large for the measured flue gas flow rate and for boilers and stoves with high fraction of energy going to the water jacket also the calculated heat rate to the room may have large uncertainties. A methodology for the parameter identification process and identified parameters for two different stoves and three boilers are given. Finally the identified models are compared with measured data showing that the model generally agreed well with meas-ured data during both stationary and dynamic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In bio-fuel we trust. Or do we? In this chapter, ethnographic material from Sweden is used to discuss ways sin which trust may influence the choice of bio-fuel for heating purposes. The meaning and substance of trust or distrust, as well as the very conditions for trust, are elaborated on in relation to solar and bio-pellet systems, district heating with bio-fuel, and traditional fireplaces. An important conclusion of this chapter is that the degree to which people perceive others as being like themselves or not tends to be decisive for whether these others are to be trusted, and therefore worth listening to. The context and situation in which a certain heating system is being chosen does not only involve trust in individuals, however, but in companies and the authorities, as well as in the arterfacts themselves. An example is given on how distrust of district heating companies led house owners to reject an offer of district heating despite the comfort and environmental benefit this could have provided. it is shown how this distrust might be resolved by making the rhythm of households and sitrict heating companies more in step with one another. The strong emotional attachment to and deep-felt trust in the traditional fireplace is also analysed, and a question is put forward as to whether these feelings could be transferred to modern bio-pellet stoves. Finally, our great and assured trust in bio-fuel as a main solution to global climate change is shortly commented upon and partly questioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate how electricallyheated houses can be converted to using wood pellet and solarheating. There are a large number of wood pellet stoves on themarket. Many stoves have a water jacket, which gives anopportunity to distribute the heat to domestic hot water and aradiator heating system. Three typical Swedish houses with electric resistanceheating have been studied. Fourteen different system conceptsusing wood pellet stoves and solar heating systems have beenevaluated. The systems and the houses have been simulated indetail using TRNSYS. The houses have been divided in up to 10different zones and heat transfer by air circulation throughdoorways and open doors have been simulated. The pellet stoveswere simulated using a recently developed TRNSYS component,which models the start- and stop phases, emissions and thedynamic behaviour of the stoves. The model also calculates theCO-emissions. Simulations were made with one stove without awater jacket and two stoves with different fractions of thegenerated heat distributed in the water circuit. Simulations show that the electricity savings using a pelletstove are greatly affected by the house plan, the systemchoice, if the internal doors are open or closed and thedesired level of comfort. Installing a stove with awater-jacket connected to a radiator system and a hot waterstorage has the advantage that heat can be transferred todomestic hot water and be distributed to other rooms. Suchsystems lead to greater electricity savings, especially inhouses having a traditional layout. It was found that not allrooms needed radiators and that it was more effective in mostcases t use a stove with a higher fraction of the heatdistributed by the water circuit. The economic investigation shows that installing a woodpellet stove without a water jacket gives the lowest totalenergy- and capital costs in the house with an open plan (fortoday's energy prices and the simulated comfort criteria). Inthe houses with a traditional layout a pellet stove givesslightly higher costs than the reference house having onlyelectrical resistance heating due to the fact that less heatingcan be replaced. The concepts including stoves with a waterjacket all give higher costs than the reference system, but theconcept closest to be economical is a system with a bufferstore, a stove with a high fraction of the heat distributed bythe water circuit, a new water radiator heating system and asolar collector. Losses from stoves can be divided into: flue gas lossesincluding leakage air flow when the stove is not in operation;losses during start and stop phases; and losses due to a highair factor. An increased efficiency of the stoves is importantboth from a private economical point of view, but also from theperspective that there can be a lack of bio fuel in the nearfuture also in Sweden. From this point of view it is alsoimportant to utilize as much solar heat as possible. Theutilization of solar heat is low in the simulated systems,depending on the lack of space for a large buffer store. The simulations have shown that the annual efficiency ismuch lower that the nominal efficiency at full power. Thesimulations have also shown that changing the control principlefor the stove can improve efficiency and reduce theCO-emissions. Today's most common control principle for stovesis the on/off control, which results in many starts and stopsand thereby high CO-emissions. A more advanced control varyingthe heating rate from maximum to minimum to keep a constantroom temperature reduces the number of starts and stops andthereby the emissions. Also the efficiency can be higher withsuch a control, and the room temperature will be kept at a moreconstant temperature providing a higher comfort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.