2 resultados para Stone-cutting.

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment.  In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties.  Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy.   The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.