2 resultados para Stochastic quantization

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the cost efficiency in achieving the Swedish national air quality objectives under uncertainty. To realize an ecologically sustainable society, the parliament has approved a set of interim and long-term pollution reduction targets. However, there are considerable quantification uncertainties on the effectiveness of the proposed pollution reduction measures. In this paper, we develop a multivariate stochastic control framework to deal with the cost efficiency problem with multiple pollutants. Based on the cost and technological data collected by several national authorities, we explore the implications of alternative probabilistic constraints. It is found that a composite probabilistic constraint induces considerably lower abatement cost than separable probabilistic restrictions. The trend is reinforced by the presence of positive correlations between reductions in the multiple pollutants.