6 resultados para Stochastic SIS logistic model

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a degenerative illness whose cardinal symptoms include rigidity, tremor, and slowness of movement. In addition to its widely recognized effects PD can have a profound effect on speech and voice.The speech symptoms most commonly demonstrated by patients with PD are reduced vocal loudness, monopitch, disruptions of voice quality, and abnormally fast rate of speech. This cluster of speech symptoms is often termed Hypokinetic Dysarthria.The disease can be difficult to diagnose accurately, especially in its early stages, due to this reason, automatic techniques based on Artificial Intelligence should increase the diagnosing accuracy and to help the doctors make better decisions. The aim of the thesis work is to predict the PD based on the audio files collected from various patients.Audio files are preprocessed in order to attain the features.The preprocessed data contains 23 attributes and 195 instances. On an average there are six voice recordings per person, By using data compression technique such as Discrete Cosine Transform (DCT) number of instances can be minimized, after data compression, attribute selection is done using several WEKA build in methods such as ChiSquared, GainRatio, Infogain after identifying the important attributes, we evaluate attributes one by one by using stepwise regression.Based on the selected attributes we process in WEKA by using cost sensitive classifier with various algorithms like MultiPass LVQ, Logistic Model Tree(LMT), K-Star.The classified results shows on an average 80%.By using this features 95% approximate classification of PD is acheived.This shows that using the audio dataset, PD could be predicted with a higher level of accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Biosim” is a simulation software which works to simulate the harvesting system.This system is able to design a model for any logistic problem with the combination of several objects so that the artificial system can show the performance of an individual model. The system will also describe the efficiency, possibility to be chosen for real life application of that particular model. So, when any one wish to setup a logistic model like- harvesting system, in real life he/she may be noticed about the suitable prostitution for his plants and factories as well as he/she may get information about the least number of objects, total time to complete the task, total investment required for his model, total amount of noise produced for his establishment in advance. It will produce an advance over view for his model. But “Biosim” is quite slow .As it is an object based system, it takes long time to make its decision. Here the main task is to modify the system so that it can work faster than the previous. So, the main objective of this thesis is to reduce the load of “Biosim” by making some modification of the original system as well as to increase its efficiency. So that the whole system will be faster than the previous one and performs more efficiently when it will be applied in real life. Theconcept is to separate the execution part of ”Biosim” form its graphical engine and run this separated portion in a third generation language platform. C++ is chosenhere as this external platform. After completing the proposed system, results with different models have been observed. The results show that, for any type of plants of fields, for any number of trucks, the proposed system is faster than the original system. The proposed system takes at least 15% less time “Biosim”. The efficiency increase with the complexity of than the original the model. More complex the model, more efficient the proposed system is than original “Biosim”.Depending on the complexity of a model, the proposed system can be 56.53 % faster than the original “Biosim”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unplanned hospital readmissions increase health and medical care costs and indicate lower the lower quality of the healthcare services. Hence, predicting patients at risk to be readmitted is of interest. Using administrative data of patients being treated in the medical centers and hospitals in the Dalarna County, Sweden, during 2008 – 2016 two risk prediction models of hospital readmission are built. The first model relies on the logistic regression (LR) approach, predicts correctly 2,648 out of 3,392 observed readmission in the test dataset, reaching a c-statistics of 0.69. The second model is built using random forests (RF) algorithm; correctly predicts 2,183 readmission (out of 3,366) and 13,198 non-readmission events (out of 18,982). The discriminating ability of the best performing RF model (c-statistic 0.60) is comparable to that of the logistic model. Although the discriminating ability of both LR and RF risk prediction models is relatively modest, still these models are capable to identify patients running high risk of hospital readmission. These patients can then be targeted with specific interventions, in order to prevent the readmission, improve patients’ quality of life and reduce health and medical care costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: People who have suffered a stroke commonly report unfulfilled need for rehabilitation. Using a model of patient satisfaction, we examined characteristics in individuals that at 3 months after stroke predicted, or at 12 months were associated with unmet need for rehabilitation or dissatisfaction with health care services at 12 months after stroke. METHODS: The participants (n = 175) received care at the stroke units at the Karolinska University Hospital, Sweden. The dependent variables "unfulfilled needs for rehabilitation" and "dissatisfaction with care" were collected using a questionnaire. Stroke severity, domains of the Stroke Impact Scale (SIS), the Sense of Coherence scale (SOC) and socio demographic factors were used as independent variables in four logistic regression analyses. RESULTS: Unfulfilled needs for rehabilitation at 12 months were predicted by strength (SIS) (odds ratio (OR) 7.05) at three months, and associated with hand function (SIS) (OR 4.38) and poor self-rated recovery (SIS) (OR 2.46) at 12 months. Dissatisfaction with care was predicted by SOC (OR 4.18) and participation (SIS) (OR 3.78), and associated with SOC (OR 3.63) and strength (SIS) (OR 3.08). CONCLUSIONS: Thirty-three percent of the participants reported unmet needs for rehabilitation and fourteen percent were dissatisfied with the care received. In order to attend to rehabilitation needs when they arise, rehabilitation services may need to be more flexible in terms of when rehabilitation is provided. Long term services with scheduled re-assessments and with more emphasis on understanding the experiences of both the patients and their social networks might better be able to provide services that attend to patients' needs and aid peoples' reorientation; this would apply particularly to those with poor coping capacity.