3 resultados para Speech-processing technologies

em Dalarna University College Electronic Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Voice processing in real-time is challenging. A drawback of previous work for Hypokinetic Dysarthria (HKD) recognition is the requirement of controlled settings in a laboratory environment. A personal digital assistant (PDA) has been developed for home assessment of PD patients. The PDA offers sound processing capabilities, which allow for developing a module for recognition and quantification HKD. Objective: To compose an algorithm for assessment of PD speech severity in the home environment based on a review synthesis. Methods: A two-tier review methodology is utilized. The first tier focuses on real-time problems in speech detection. In the second tier, acoustics features that are robust to medication changes in Levodopa-responsive patients are investigated for HKD recognition. Keywords such as Hypokinetic Dysarthria , and Speech recognition in real time were used in the search engines. IEEE explorer produced the most useful search hits as compared to Google Scholar, ELIN, EBRARY, PubMed and LIBRIS. Results: Vowel and consonant formants are the most relevant acoustic parameters to reflect PD medication changes. Since relevant speech segments (consonants and vowels) contains minority of speech energy, intelligibility can be improved by amplifying the voice signal using amplitude compression. Pause detection and peak to average power rate calculations for voice segmentation produce rich voice features in real time. Enhancements in voice segmentation can be done by inducing Zero-Crossing rate (ZCR). Consonants have high ZCR whereas vowels have low ZCR. Wavelet transform is found promising for voice analysis since it quantizes non-stationary voice signals over time-series using scale and translation parameters. In this way voice intelligibility in the waveforms can be analyzed in each time frame. Conclusions: This review evaluated HKD recognition algorithms to develop a tool for PD speech home-assessment using modern mobile technology. An algorithm that tackles realtime constraints in HKD recognition based on the review synthesis is proposed. We suggest that speech features may be further processed using wavelet transforms and used with a neural network for detection and quantification of speech anomalies related to PD. Based on this model, patients' speech can be automatically categorized according to UPDRS speech ratings.