4 resultados para Spatial models

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new version of the hglm package for fittinghierarchical generalized linear models (HGLM) with spatially correlated random effects. A CAR family for conditional autoregressive random effects was implemented. Eigen decomposition of the matrix describing the spatial structure (e.g. the neighborhood matrix) was used to transform the CAR random effectsinto an independent, but heteroscedastic, gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR model.This gives a computationally efficient algorithm for moderately sized problems (e.g. n<5000).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Location Models are usedfor planning the location of multiple service centers in order to serve a geographicallydistributed population. A cornerstone of such models is the measure of distancebetween the service center and a set of demand points, viz, the location of thepopulation (customers, pupils, patients and so on). Theoretical as well asempirical evidence support the current practice of using the Euclidian distancein metropolitan areas. In this paper, we argue and provide empirical evidencethat such a measure is misleading once the Location Models are applied to ruralareas with heterogeneous transport networks. This paper stems from the problemof finding an optimal allocation of a pre-specified number of hospitals in alarge Swedish region with a low population density. We conclude that the Euclidianand the network distances based on a homogenous network (equal travel costs inthe whole network) give approximately the same optimums. However networkdistances calculated from a heterogeneous network (different travel costs indifferent parts of the network) give widely different optimums when the numberof hospitals increases.  In terms ofaccessibility we find that the recent closure of hospitals and the in-optimallocation of the remaining ones has increased the average travel distance by 75%for the population. Finally, aggregation the population misplaces the hospitalsby on average 10 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.