8 resultados para Spatial data infrastructure
em Dalarna University College Electronic Archive
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
Gross domestic product (GDP) is generally considered as the most important index and comprehensive measure of the size of economy. This paper investigates empirically the relationship between transport infrastructure (focus on highways) and GDP growth based on a production function approach. The physical stocks of transport infrastructure were used instead of monetary data to measure public capital together with several other variables (labor and private capital) that were hypothesized to affect economic growth. Then we explore a number of subsequent studies that use panel data covering the period between 1992 and 2004. An investigation was done to compare developed countries and developing countries. Results indicate that physical units are positively and significantly related to economic growth. Furthermore there was an interesting finding that the output elasticity with respect to physical units for developed countries is higher than developing countries.
Resumo:
Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.
Resumo:
This thesis consists of a summary and five self-contained papers addressing dynamics of firms in the Swedish wholesale trade sector. Paper [1] focuses upon determinants of new firm formation in the Swedish wholesale trade sector, using two definitions of firms’ relevant markets, markets defined as administrative areas, and markets based on a cost minimizing behavior of retailers. The paper shows that new entering firms tend to avoid regions with already high concentration of other firms in the same branch of wholesaling, while right-of-the-center local government and quality of the infrastructure have positive impacts upon entry of new firms. The signs of the estimated coefficients remain the same regardless which definition of relevant market is used, while the size of the coefficients is generally higher once relevant markets delineated on the cost-minimizing assumption of retailers are used. Paper [2] analyses determinant of firm relocation, distinguishing between the role of the factors in in-migration municipalities and out-migration municipalities. The results of the analysis indicate that firm-specific factors, such as profits, age and size of the firm are negatively related to the firm’s decision to relocate. Furthermore, firms seems to be avoiding municipalities with already high concentration of firms operating in the same industrial branch of wholesaling and also to be more reluctant to leave municipalities governed by right-of-the- center parties. Lastly, firms seem to avoid moving to municipalities characterized with high population density. Paper [3] addresses determinants of firm growth, adopting OLS and a quantile regression technique. The results of this paper indicate that very little of the firm growth can be explained by the firm-, industry- and region-specific factors, controlled for in the estimated models. Instead, the firm growth seems to be driven by internal characteristics of firms, factors difficult to capture in conventional statistics. This result supports Penrose’s (1959) suggestion that internal resources such as firm culture, brand loyalty, entrepreneurial skills, and so on, are important determinants of firm growth rates. Paper [4] formulates a forecasting model for firm entry into local markets and tests this model using data from the Swedish wholesale industry. The empirical analysis is based on directly estimating the profit function of wholesale firms and identification of low- and high-return local markets. The results indicate that 19 of 30 estimated models have more net entry in high-return municipalities, but the estimated parameters is only statistically significant at conventional level in one of our estimated models, and then with unexpected negative sign. Paper [5] studies effects of firm relocation on firm profits of relocating firms, employing a difference-in-difference propensity score matching. Using propensity score matching, the pre-relocalization differences between relocating and non-relocating firms are balanced, while the difference-in-difference estimator controls for all time-invariant unobserved heterogeneity among firms. The results suggest that firms that relocate increase their profits significantly, in comparison to what the profits would be had the firms not relocated. This effect is estimated to vary between 3 to 11 percentage points, depending on the length of the analyzed period.
Resumo:
GPS tracking of mobile objects provides spatial and temporal data for a broad range of applications including traffic management and control, transportation routing and planning. Previous transport research has focused on GPS tracking data as an appealing alternative to travel diaries. Moreover, the GPS based data are gradually becoming a cornerstone for real-time traffic management. Tracking data of vehicles from GPS devices are however susceptible to measurement errors – a neglected issue in transport research. By conducting a randomized experiment, we assess the reliability of GPS based traffic data on geographical position, velocity, and altitude for three types of vehicles; bike, car, and bus. We find the geographical positioning reliable, but with an error greater than postulated by the manufacturer and a non-negligible risk for aberrant positioning. Velocity is slightly underestimated, whereas altitude measurements are unreliable.
Resumo:
The aim of this paper is to evaluate the performance of two divergent methods for delineating commuting regions, also called labour market areas, in a situation that the base spatial units differ largely in size as a result of an irregular population distribution. Commuting patterns in Sweden have been analyzed with geographical information system technology by delineating commuting regions using two regionalization methods. One, a rule-based method, uses one-way commuting flows to delineate local labour market areas in a top-down procedure based on the selection of predefined employment centres. The other method, the interaction-based Intramax analysis, uses two-way flows in a bottom-up procedure based on numerical taxonomy principles. A comparison of these methods will expose a number of strengths and weaknesses. For both methods, the same data source has been used. The performance of both methods has been evaluated for the country as a whole using resident employed population, self-containment levels and job ratios for criteria. A more detailed evaluation has been done in the Goteborg metropolitan area by comparing regional patterns with the commuting fields of a number of urban centres in this area. It is concluded that both methods could benefit from the inclusion of additional control measures to identify improper allocations of municipalities.
Resumo:
Delineation of commuting regions has always been based on statistical units, often municipalities or wards. However, using these units has certain disadvantages as their land areas differ considerably. Much information is lost in the larger spatial base units and distortions in self-containment values, the main criterion in rule-based delineation procedures, occur. Alternatively, one can start from relatively small standard size units such as hexagons. In this way, much greater detail in spatial patterns is obtained. In this paper, regions are built by means of intrazonal maximization (Intramax) on the basis of hexagons. The use of geoprocessing tools, specifically developed for the processing ofcommuting data, speeds up processing time considerably. The results of the Intramax analysis are evaluated with travel-to-work area constraints, and comparisons are made with commuting fields, accessibility to employment, commuting flow density and network commuting flow size. From selected steps in the regionalization process, a hierarchy of nested commuting regions emerges, revealing the complexity of commuting patterns.