2 resultados para Somatic cell count (SSC)

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal traits differ not only in mean, but also in variation around the mean. For instance, one sire’s daughter group may be very homogeneous, while another sire’s daughters are much more heterogeneous in performance. The difference in residual variance can partially be explained by genetic differences. Models for such genetic heterogeneity of environmental variance include genetic effects for the mean and residual variance, and a correlation between the genetic effects for the mean and residual variance to measure how the residual variance might vary with the mean. The aim of this thesis was to develop a method based on double hierarchical generalized linear models for estimating genetic heteroscedasticity, and to apply it on four traits in two domestic animal species; teat count and litter size in pigs, and milk production and somatic cell count in dairy cows. The method developed is fast and has been implemented in software that is widely used in animal breeding, which makes it convenient to use. It is based on an approximation of double hierarchical generalized linear models by normal distributions. When having repeated observations on individuals or genetic groups, the estimates were found to be unbiased. For the traits studied, the estimated heritability values for the mean and the residual variance, and the genetic coefficients of variation, were found in the usual ranges reported. The genetic correlation between mean and residual variance was estimated for the pig traits only, and was found to be favorable for litter size, but unfavorable for teat count.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015. Methods For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassifi cation. Findings Global HIV incidence reached its peak in 1997, at 3·3 million new infections (95% uncertainty interval [UI] 3·1–3·4 million). Annual incidence has stayed relatively constant at about 2·6 million per year (range 2·5–2·8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38·8 million (95% UI 37·6–40·4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1·8 million deaths (95% UI 1·7–1·9 million) in 2005, to 1·2 million deaths (1·1–1·3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections. Interpretation Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued eff orts from governments and international agencies in the next 15 years to end AIDS by 2030.