6 resultados para Solar Aspect Angle
em Dalarna University College Electronic Archive
Resumo:
Irradiation distribution functions based on the yearly collectible energy have been derived for two locations; Sydney, Australia which represents a mid-latitude site and Stockholm, Sweden, which represents a high latitude site. The strong skewing of collectible energy toward summer solstice at high latitudes dictates optimal collector tilt angles considerably below the polar mount. The lack of winter radiation at high latitudes indicates that the optimal acceptance angle for a stationary EW-aligned concentrator decreases as latitude increases. Furthermore concentrator design should be highly asymmetric at high latitudes.
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.
Resumo:
This work treats the thermal and mechanical performances of gas-filled, flat plate solar collectors in order to achieve a better performance than that of air filled collectors. The gases examined are argon, krypton and xenon which all have lower thermal conductivity than air. The absorber is formed as a tray connected to the glass. The pressure of the gas inside is near to the ambient and since the gas volume will vary as the temperature changes, there are potential risks for fatigue in the material. One heat transfer model and one mechanical model were built. The mechanical model gave stresses and information on the movements. The factors of safety were calculated from the stresses, and the movements were used as input for the heat transfer model where the thermal performance was calculated. It is shown that gas-filled, flat plate solar collectors can be designed to achieve good thermal performance at a competitive cost. The best yield is achieved with a xenon gas filling together with a normal thick absorber, where normal thick means a 0.25 mm copper absorber. However, a great deal of energy is needed to produce the xenon gas, and if this aspect is taken into account, the krypton filling is better. Good thermal performance can also be achieved using less material; a collector with a 0.1 mm thick copper absorber and the third best gas, which is argon, still gives a better operating performance than a common, commercially produced, air filled collector with a 0.25 mm absorber. When manufacturing gas-filled flat plate solar collectors, one way of decreasing the total material costs significantly, is by changing absorber material from copper to aluminium. Best yield per monetary outlay is given by a thin (0.3 mm) alu-minium absorber with an argon filling. A high factor of safety is achieved with thin absorbers, large absorber areas, rectangular constructions with long tubes and short distances between glass and absorber. The latter will also give a thin layer of gas which gives good thermal performance. The only doubtii ful construction is an argon filled collector with a normal thick (> 0.50 mm) aluminium absorber. In general, an assessment of the stresses for the proposed construction together with appropriate tests are recommended before manufacturing, since it is hard to predict the factor of safety; if one part is reinforced, some other parts can experience more stress and the factor of safety actually drops.
Resumo:
A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.
Resumo:
Emissions are an important aspect of a pellet heating system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner when the burner is operated below the lowest combustion power. Combining pellet heating systems with a solar heating system can significantly reduce cycling of the pellet heater and avoid the inefficient summer operation of the pellet heater. The aim of this paper was to study CO-emissions of the different types of systems and to compare the yearly CO-emissions obtained from simulations with the yearly CO-emissions calculated based on the values that are obtained by the standard test methods. The results showed that the yearly CO-emissions obtained from the simulations are significant higher than the yearly CO-emissions calculated based on the standard test methods. It is also shown that for the studied systems the average emissions under these realistic annual conditions were greater than the limit values of two Eco-labels. Furthermore it could be seen that is possible to almost halve the CO-emission if the pellet heater is combined with a solar heating system.