4 resultados para Software Simulation
em Dalarna University College Electronic Archive
Resumo:
In this project, two broad facets in the design of a methodology for performance optimization of indexable carbide inserts were examined. They were physical destructive testing and software simulation.For the physical testing, statistical research techniques were used for the design of the methodology. A five step method which began with Problem definition, through System identification, Statistical model formation, Data collection and Statistical analyses and results was indepthly elaborated upon. Set-up and execution of an experiment with a compression machine together with roadblocks and possible solution to curb road blocks to quality data collection were examined. 2k factorial design was illustrated and recommended for process improvement. Instances of first-order and second-order response surface analyses were encountered. In the case of curvature, test for curvature significance with center point analysis was recommended. Process optimization with method of steepest ascent and central composite design or process robustness studies of response surface analyses were also recommended.For the simulation test, AdvantEdge program was identified as the most used software for tool development. Challenges to the efficient application of this software were identified and possible solutions proposed. In conclusion, software simulation and physical testing were recommended to meet the objective of the project.
Resumo:
The work presented in this thesis concerns the dimensioning of an Energy Storage System (ESS) which will be used as an energy buffer for a grid-connected PV plant. This ESS should help managing the PV plant to inject electricity into the grid according to the requirements of the grid System Operator. It is desired to obtain a final production not below 1300kWh/kWp with a maximum ESS budget of 0.9€/Wp. The PV plant will be sited in Martinique Island and connected to the main grid. This grid is a small one where the perturbations due clouds in the PV generation are not negligible anymore. A software simulation tool, incorporating a model for the PV-plant production, the ESS and the required injection pattern of electricity into the grid has been developed in MS Excel. This tool has been used to optimize the relevant parameters defining the ESS so that the feed-in of electricity into the grid can be controlled to fulfill the conditions given by the System Operator. The inputs used for this simulation tool are, besides the conditions given by the System Operator on the allowed injection pattern, the production data from a similar PV-plant in a close-by location, and variables for defining the ESS. The PV production data used is from a site with similar climate and weather conditions as for the site on the Martinique Island and hence gives information on the short term insolation variations as well as expected annual electricity production. The ESS capacity and the injected electric energy will be the main figures to compare while doing an economic study of the whole plant. Hence, the Net Present Value, Benefit to Cost method and Pay-back period studies are carried on as dependent of the ESS capacity. The conclusion of this work is that it is possible to obtain the requested injection pattern by using an ESS. The design of the ESS can be made within an acceptable budget. The capacity of ESS to link with the PV system depends on the priorities of the final output characteristics, and it also depends on which economic parameter that is chosen as a priority.
Resumo:
Bergkvist insjön AB is a sawmill yard which is capable of producing 350,000 cubic meter of timber every year this requires lot of internal resources. Sawmill operations can be classified as unloading, sorting, storage and production of timber. In the company we have trucks arriving at random they have to be unloaded and sent back at the earliest to avoid queuing up of trucks creating a problem for truck owners. The sawmill yard has to operate with two log stackers that does several tasks including transporting the logs from trucks to measurement station where the logs will be sorted into classes and dropped into pockets from pockets to the sorted timber yard where they are stored and finally from there to sawmill for final processing. The main issue that needs to be answered here is the lining up trucks that are waiting to be unload, creating a problem for both sawmill as well as the truck owners and given huge production volume, it is certain that handling of resources is top priority. A key challenge in handling of resources would be unloading of trucks and finding a way to optimize internal resources.To address this problem i have experimented on different ways of using internal resources, i have designed different cases, in case 1 we have both the log stackers working on sawmill and measurement station. The main objective of having this case is to make sawmill and measurement station to work all the time. Then in case 2, i have divided the work between both the log stackers, one log stacker will be working on sawmill and pocket_control and second log stacker will be working on measurement station and truck. Then in case 3 we have only one log stacker working on all the agents, this case was designed to reduce cost of production, as the experiment cannot be done in real-time due to operational cost, for this purpose simulation is used, preliminary investigation into simulation results suggested that case 2 is the best option has it reduced waiting time of trucks considerably when compared with other cases and it showed 50% increase in optimizing internal resources.
Resumo:
Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.