1 resultado para Skill-biased technical change
em Dalarna University College Electronic Archive
Filtro por publicador
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (12)
- Aquatic Commons (6)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (29)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (26)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Ecology and Society (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- Helda - Digital Repository of University of Helsinki (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (7)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- Queensland University of Technology - ePrints Archive (613)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (3)
- University of Michigan (19)
- University of Queensland eSpace - Australia (4)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
Resumo:
We consider method of moment fixed effects (FE) estimation of technical inefficiency. When N, the number of cross sectional observations, is large it ispossible to obtain consistent central moments of the population distribution of the inefficiencies. It is well-known that the traditional FE estimator may be seriously upward biased when N is large and T, the number of time observations, is small. Based on the second central moment and a single parameter distributional assumption on the inefficiencies, we obtain unbiased technical inefficiencies in large N settings. The proposed methodology bridges traditional FE and maximum likelihood estimation – bias is reduced without the random effects assumption.