6 resultados para Skew divergence. Segmentation. Clustering. Textural color image
em Dalarna University College Electronic Archive
Resumo:
The purpose of this thesis is to develop a working methodology to color a grey scale image. This thesis is based on approach of using a colored reference image. Coloring grey scale images has no exact solution till date and all available methods are based on approximation. This technique of using a color reference image for approximating color information in grey scale image is among most modern techniques.Method developed here in this paper is better than existing methods of approximation of color information addition in grey scale images in brightness, sharpness, color shade gradients and distribution of colors over objects.Color and grey scale images are analyzed for statistical and textural features. This analysis is done only on basis of luminance value in images. These features are then segmented and segments of color and grey scale images are mapped on basis of distances of segments from origin. Then chromatic values are transferred between these matched segments from color image to grey scale image.Technique proposed in this paper uses better mechanism of mapping clusters and mapping colors between segments, resulting in notable improvement in existing techniques in this category.
Resumo:
This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.
Resumo:
Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.
Resumo:
This paper aims to present three new methods for color detection and segmentation of road signs. The images are taken by a digital camera mounted in a car. The RGB images are converted into IHLS color space, and new methods are applied to extract the colors of the road signs under consideration. The methods are tested on hundreds of outdoor images in different light conditions, and they show high robustness. This project is part of the research taking place in Dalarna University / Sweden in the field of the ITS.
Resumo:
In this thesis, a new algorithm has been proposed to segment the foreground of the fingerprint from the image under consideration. The algorithm uses three features, mean, variance and coherence. Based on these features, a rule system is built to help the algorithm to efficiently segment the image. In addition, the proposed algorithm combine split and merge with modified Otsu. Both enhancements techniques such as Gaussian filter and histogram equalization are applied to enhance and improve the quality of the image. Finally, a post processing technique is implemented to counter the undesirable effect in the segmented image. Fingerprint recognition system is one of the oldest recognition systems in biometrics techniques. Everyone have a unique and unchangeable fingerprint. Based on this uniqueness and distinctness, fingerprint identification has been used in many applications for a long period. A fingerprint image is a pattern which consists of two regions, foreground and background. The foreground contains all important information needed in the automatic fingerprint recognition systems. However, the background is a noisy region that contributes to the extraction of false minutiae in the system. To avoid the extraction of false minutiae, there are many steps which should be followed such as preprocessing and enhancement. One of these steps is the transformation of the fingerprint image from gray-scale image to black and white image. This transformation is called segmentation or binarization. The aim for fingerprint segmentation is to separate the foreground from the background. Due to the nature of fingerprint image, the segmentation becomes an important and challenging task. The proposed algorithm is applied on FVC2000 database. Manual examinations from human experts show that the proposed algorithm provides an efficient segmentation results. These improved results are demonstrating in diverse experiments.
Resumo:
The objective of this thesis work, is to propose an algorithm to detect the faces in a digital image with complex background. A lot of work has already been done in the area of face detection, but drawback of some face detection algorithms is the lack of ability to detect faces with closed eyes and open mouth. Thus facial features form an important basis for detection. The current thesis work focuses on detection of faces based on facial objects. The procedure is composed of three different phases: segmentation phase, filtering phase and localization phase. In segmentation phase, the algorithm utilizes color segmentation to isolate human skin color based on its chrominance properties. In filtering phase, Minkowski addition based object removal (Morphological operations) has been used to remove the non-skin regions. In the last phase, Image Processing and Computer Vision methods have been used to find the existence of facial components in the skin regions.This method is effective on detecting a face region with closed eyes, open mouth and a half profile face. The experiment’s results demonstrated that the detection accuracy is around 85.4% and the detection speed is faster when compared to neural network method and other techniques.