6 resultados para Single-page applications

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-page applications have historically been subject to strong market forces driving fast development and deployment in lieu of quality control and changeable code, which are important factors for maintainability. In this report we develop two functionally equivalent applications using AngularJS and React and compare their maintainability as defined by ISO/IEC 9126. AngularJS and React represent two distinct approaches to web development, with AngularJS being a general framework providing rich base functionality and React a small specialized library for efficient view rendering. The quality comparison was accomplished by calculating Maintainability Index for each application. Version control analysis was used to determine quality indicators during development and subsequent maintenance where new functionality was added in two steps.   The results show no major differences in maintainability in the initial applications. As more functionality is added the Maintainability Index decreases faster in the AngularJS application, indicating a steeper increase in complexity compared to the React application. Source code analysis reveals that changes in data flow requires significantly larger modifications of the AngularJS application due to its inherent architecture for data flow. We conclude that frameworks are useful when they facilitate development of known requirements but less so when applications and systems grow in size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-page applications have historically been subject to strong market forces driving fast development and deployment in lieu of quality control and changeable code, which are important factors for maintainability. In this report we develop two functionally equivalent applications using AngularJS and React and compare their maintainability as defined by ISO/IEC 9126. AngularJS and React represent two distinct approaches to web development, with AngularJS being a general framework providing rich base functionality and React a small specialized library for efficient view rendering. The quality comparison was accomplished by calculating Maintainability Index for each application. Version control analysis was used to determine quality indicators during development and subsequent maintenance where new functionality was added in two steps. The results show no major differences in maintainability in the initial applications. As more functionality is added the Maintainability Index decreases faster in the AngularJS application, indicating a steeper increase in complexity compared to the React application. Source code analysis reveals that changes in data flow requires significantly larger modifications of the AngularJS application due to its inherent architecture for data flow. We conclude that frameworks are useful when they facilitate development of known requirements but less so when applications and systems grow in size. Sammanfattning: Ensidesapplikationer har historiskt sett påverkats av starka marknadskrafter som pådriver snabba utvecklingscykler och leveranser. Detta medför att kvalitetskontroll och förändringsbar kod, som är viktiga faktorer för förvaltningsbarhet, blir lidande. I denna rapport utvecklar vi två funktionellt ekvi-valenta ensidesapplikationer med AngularJS och React samt jämför dessa applikationers förvaltningsbarhet enligt ISO/IEC 9126. AngularJS och React representerar två distinkta angreppsätt på webbutveckling, där AngularJS är ett ramverk med mycket färdig funktionalitet och React ett mindre bibliotek specialiserat på vyrendering. Kvalitetsjämförelsen utfördes genom att beräkna förvaltningsbarhetsindex för respektive applikation. Versionshanteringsanalys användes för att bestämma andra kvalitetsindikatorer efter den initiala utvecklingen samt två efterföljande underhållsarbeten. Resultaten visar inga markanta skillnader i förvaltningsbarhet för de initiala applikationerna. I takt med att mer funktionalitet lades till sjönk förvaltnings-barhetsindex snabbare för AngularJS-applikationen, vilket motsvarar en kraftigare ökning i komplexitet jämfört med React-applikationen. Versionshanteringsanalys visar att ändringar i dataflödet kräver större modifikationer för AngularJS-applikationen på grund av dess förbestämda arkitektur. Utifrån detta drar vi slutsatsen att ramverk är användbara när de understödjer utvecklingen mot kända krav men att deras nytta blir begränsad ju mer en applikation växer i storlek.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such technologies. These are associated with high system and installation costs, significant system complexity, and lack of knowledge of system implementation and expected performance. A sorption heat pump module that can be integrated directly into a solar thermal collector has thus been developed in order to tackle the aforementioned market barriers. This has been designed for the development of cost-effective pre-engineered solar energy system kits that can provide both heating and cooling. This thesis summarises the characterisation studies of the operation of individual sorption modules, sorption module integrated solar collectors and a full solar heating and cooling system employing sorption module integrated collectors. Key performance indicators for the individual sorption modules showed cooling delivery for 6 hours at an average power of 40 W and a temperature lift of 21°C. Upon integration of the sorption modules into a solar collector, measured solar radiation energy to cooling energy conversion efficiencies (solar cooling COP) were between 0.10 and 0.25 with average cooling powers between 90 and 200 W/m2 collector aperture area. Further investigations of the sorption module integrated collectors implementation in a full solar heating and cooling system yielded electrical cooling COP ranging from 1.7 to 12.6 with an average of 10.6 for the test period. Additionally, simulations were performed to determine system energy and cost saving potential for various system sizes over a full year of operation for a 140 m2 single-family dwelling located in Madrid, Spain. Simulations yielded an annual solar fraction of 42% and potential cost savings of €386 per annum for a solar heating and cooling installation employing 20m2 of sorption integrated collectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing energy use has caused many environmental problems including global warming. Energy use is growing rapidly in developing countries and surprisingly a remarkable portion of it is associated with consumed energy to keep the temperature comfortable inside the buildings. Therefore, identifying renewable technologies for cooling and heating is essential. This study introduced applications of steel sheets integrated into the buildings to save energy based on existing technologies. In addition, the proposed application was found to have a considerable chance of market success. Also, satisfying energy needs for space heating and cooling in a single room by using one of the selected applications in different Köppen climate classes was investigated to estimate which climates have a proper potential for benefiting from the application. This study included three independent parts and the results related to each part have been used in the next part. The first part recognizes six different technologies through literature review including Cool Roof, Solar Chimney, Steel Cladding of Building, Night Radiative Cooling, Elastomer Metal Absorber, and Solar Distillation. The second part evaluated the application of different technologies by gathering the experts’ ideas via performing a Delphi method. The results showed that the Solar Chimney has a proper chance for the market. The third part simulated both a solar chimney and a solar chimney with evaporation which were connected to a single well insulated room with a considerable thermal mass. The combination was simulated as a system to estimate the possibility of satisfying cooling needs and heating needs in different climate classes. A Trombe-wall was selected as a sample design for the Solar Chimney and was simulated in different climates. The results implied that the solar chimney had the capability of reducing the cooling needs more than 25% in all of the studied locations and 100% in some locations with dry or temperate climate such as Mashhad, Madrid, and Istanbul. It was also observed that the heating needs were satisfied more than 50% in all of the studied locations, even for the continental climate such as Stockholm and 100% in most locations with a dry climate. Therefore, the Solar Chimney reduces energy use, saves environment resources, and it is a cost effective application. Furthermore, it saves the equipment costs in many locations. All the results mentioned above make the solar chimney a very practical and attractive tool for a wide range of climates.