3 resultados para Single drug dose
em Dalarna University College Electronic Archive
Resumo:
The aim of this work is to evaluate the fuzzy system for different types of patients for levodopa infusion in Parkinson Disease based on simulation experiments using the pharmacokinetic-pharmacodynamic model. Fuzzy system is to control patient’s condition by adjusting the value of flow rate, and it must be effective on three types of patients, there are three different types of patients, including sensitive, typical and tolerant patient; the sensitive patients are very sensitive to drug dosage, but the tolerant patients are resistant to drug dose, so it is important for controller to deal with dose increment and decrement to adapt different types of patients, such as sensitive and tolerant patients. Using the fuzzy system, three different types of patients can get useful control for simulating medication treatment, and controller will get good effect for patients, when the initial flow rate of infusion is in the small range of the approximate optimal value for the current patient’ type.
Resumo:
The aim of this work was to design a set of rules for levodopa infusion dose adjustment in Parkinson’s disease based on a simulation experiments. Using this simulator, optimal infusions dose in different conditions were calculated. There are seven conditions (-3 to +3)appearing in a rating scale for Parkinson’s disease patients. By finding mean of the differences between conditions and optimal dose, two sets of rules were designed. The set of rules was optimized by several testing. Usefulness for optimizing the titration procedure of new infusion patients based on rule-based reasoning was investigated. Results show that both of the number of the steps and the errors for finding optimal dose was shorten by new rules. At last, the dose predicted with new rules well on each single occasion of majority of patients in simulation experiments.
Chloroquine is grossly under dosed in young children with malaria : implications for drug resistance
Resumo:
Background: Plasmodium falciparum malaria is treated with 25 mg/kg of chloroquine (CQ) irrespective of age. Theoretically, CQ should be dosed according to body surface area (BSA). The effect of dosing CQ according to BSA has not been determined but doubling the dose per kg doubled the efficacy of CQ in children aged <15 years infected with P. falciparum carrying CQ resistance causing genes typical for Africa. The study aim was to determine the effect of age on CQ concentrations. Methods and Findings: Day 7 whole blood CQ concentrations were determined in 150 and 302 children treated with 25 and 50 mg/kg, respectively, in previously conducted clinical trials. CQ concentrations normalised for the dose taken in mg/kg of CQ decreased with decreasing age (p<0.001). CQ concentrations normalised for dose taken in mg/m(2) were unaffected by age. The median CQ concentration in children aged <2 years taking 50 mg/kg and in children aged 10-14 years taking 25 mg/kg were 825 (95% confidence interval [CI] 662-988) and 758 (95% CI 640-876) nmol/l, respectively (p = 0.67). The median CQ concentration in children aged 10-14 taking 50 mg/kg and children aged 0-2 taking 25 mg/kg were 1521 and 549 nmol/l. Adverse events were not age/concentration dependent. Conclusions: CQ is under-dosed in children and should ideally be dosed according to BSA. Children aged <2 years need approximately double the dose per kg to attain CQ concentrations found in children aged 10-14 years. Clinical trials assessing the efficacy of CQ in Africa are typically performed in children aged <5 years. Thus the efficacy of CQ is typically assessed in children in whom CQ is under dosed. Approximately 3 fold higher drug concentrations can probably be safely given to the youngest children. As CQ resistance is concentration dependent an alternative dosing of CQ may overcome resistance in Africa.