1 resultado para Signal Processing, EMD, Thresholding, Acceleration, Displacement, Structural Identification
em Dalarna University College Electronic Archive
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (46)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (68)
- CentAUR: Central Archive University of Reading - UK (36)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (8)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (53)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (57)
- Queensland University of Technology - ePrints Archive (467)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (4)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (31)
- Universidade Complutense de Madrid (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (5)
- University of Queensland eSpace - Australia (9)
- University of Washington (2)
- WestminsterResearch - UK (1)
Relevância:
Resumo:
This masters thesis describes the development of signal processing and patternrecognition in monitoring Parkison’s disease. It involves the development of a signalprocess algorithm and passing it into a pattern recogniton algorithm also. Thesealgorithms are used to determine , predict and make a conclusion on the study ofparkison’s disease. We get to understand the nature of how the parkinson’s disease isin humans.