1 resultado para Sensor data
em Dalarna University College Electronic Archive
Filtro por publicador
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Aston University Research Archive (31)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (23)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (29)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (12)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (44)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (3)
- Publishing Network for Geoscientific & Environmental Data (469)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (12)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (55)
- Universidade do Minho (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (12)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (8)
- University of Washington (2)
Resumo:
This paper is reviewing objective assessments of Parkinson’s disease(PD) motor symptoms, cardinal, and dyskinesia, using sensor systems. It surveys the manifestation of PD symptoms, sensors that were used for their detection, types of signals (measures) as well as their signal processing (data analysis) methods. A summary of this review’s finding is represented in a table including devices (sensors), measures and methods that were used in each reviewed motor symptom assessment study. In the gathered studies among sensors, accelerometers and touch screen devices are the most widely used to detect PD symptoms and among symptoms, bradykinesia and tremor were found to be mostly evaluated. In general, machine learning methods are potentially promising for this. PD is a complex disease that requires continuous monitoring and multidimensional symptom analysis. Combining existing technologies to develop new sensor platforms may assist in assessing the overall symptom profile more accurately to develop useful tools towards supporting better treatment process.