2 resultados para Seedling etiolation

em Dalarna University College Electronic Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable methods are required to protect newly planted tree seedlings from insect herbivore attack. To this end, here Norway spruce (Picea abies (L.) Karst.) seeds were treated with 2.5 mM nicotinamide (NIC), 2.5 mM nicotinic acid (NIA), 3 mM jasmonic acid (JA) or 0.2 mM 5-azacytidine (5-Aza), and 6-month-old seedlings grown from these seeds were planted at a reforestation area in central Sweden. Attack by pine weevils (Hylobius abietis) was reduced by 50 per cent by NIC treatment, 62.5 per cent by JA treatment and 25 per cent by 5-Aza treatment, when compared with seedlings grown from untreated seeds. Watering 18-month-old spruce seedlings with 2 mM NIC or 2 mM NIA did reduce attack during the first season in the field by 40 and 53 per cent, respectively, compared with untreated plants. Girdling was also reduced by the different treatments. Analysis of conifer seedlings treated with 5-Aza points at a possible involvement of epigenetic mechanisms in this defensive capacity. This is supported by a reduced level of DNA methylation in the needles of young spruce seedlings grown in a greenhouse from NIC-treated seeds. Seed treatment for seedling defense potentiation is simple, inexpensive and also a new approach for forestry with many potential applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In boreal forest regions, a great portion of forest tree seedlings are stored indoors in late autumn to prevent seedlings from outdoor winter damage. For seedlings to be able to survive in storage it is crucial that they store well and can cope with the dark and cold storage environment. The aim of this study was to search for genes that can determine the vitality status of Norway spruce (Picea abies (L.) Karst.) seedlings during frozen storage. Furthermore, the sensitivity of the ColdNSure (TM) test, a gene activity test that predicts storability was assessed. The storability of seedlings was tested biweekly by evaluating damage with the gene activity test and the electrolyte leakage test after freezing seedlings to -25 A degrees C (the SELdiff-25 method). In parallel, seedlings were frozen stored at -3 A degrees C. According to both methods, seedlings were considered storable from week 41. This also corresponded to the post storage results determined at the end of the storage period. In order to identify vitality indicators, Next Generation Sequencing (NGS) was performed on bud samples collected during storage. Comparing physiological post storage data to gene analysis data revealed numerous vitality related genes. To validate the results, a second trial was performed. In this trial, gene activity was better in predicting seedling storability than the conventional freezing test; this indicates a high sensitivity level of this molecular assay. For multiple indicators a clear switch between damaged and vital seedlings was observed. A collection of indicators will be used in the future development of a commercial vitality test.