5 resultados para SPRINT PERFORMANCE

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake (V̇O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V̇O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V̇O2max, LM, and body mass. The subjects’ test and performance data were as follows: V̇O2max, 4.0±0.3 L min-1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105 ∙ VO -6.002maxand 6.95×1010 ∙ LM-5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V̇O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V̇O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V̇O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Researchers have, for decades, contributed to an increased collective understanding of the physiological demands in cross-country skiing; however, almost all of these studies have used either non-elite subjects and/or performances that emulate cross-country skiing. To establish the physiological demands of cross-country skiing, it is important to relate the investigated physiological variables to the competitive performance of elite skiers. The overall aim of this doctoral thesis was, therefore, to investigate the external validity of physiological test variables to determine the physiological demands in competitive elite cross-country skiing. Methods The subjects in Study I – IV were elite male (I – III) and female (III – IV) cross-country skiers. In all studies, the relationship between test variables (general and ski-specific) and competitive performances (i.e. the results from competitions or the overall ski-ranking points of the International Ski Federation (FIS) for sprint (FISsprint) and distance (FISdist) races) were analysed. Test variables reflecting the subject’s general strength, upper-body and whole-body oxygen uptake, oxygen uptake and work intensity at the lactate threshold, mean upper-body power, lean mass, and maximal double-poling speed were investigated. Results The ability to maintain a high work rate without accumulating lactate is an indicator of distance performance, independent of sex (I, IV). Independent of sex, high oxygen uptake in whole-body and upper-body exercise was important for both sprint (II, IV) and distance (I, IV) performance. The maximal double-poling speed and 60-s double-poling mean power output were indicators of sprint (IV) and distance performance (I), respectively. Lean mass was correlated with distance performance for women (III), whereas correlations were found between lean mass and sprint performance among both male and female skiers (III). Moreover, no correlations between distance performance and test variables were derived from tests of knee-extension peak torque, vertical jumps, or double poling on a ski-ergometer with 20-s and 360-s durations (I), whereas gross efficiency while treadmill roller skiing showed no correlation with either distance or sprint performance in cross-country skiing (IV). Conclusion The results in this thesis show that, depending on discipline and sex, maximal and peak oxygen uptake, work intensity at the lactate threshold, lean mass, double-poling mean power output, and double-poling maximal speed are all externally valid physiological test variables for evaluation of performance capability among elite cross-country skiers; however, to optimally indicate performance capability different test-variable expressions should be used; in general, the absolute expression appears to be a better indicator of competitive sprint performance whereas the influence of body mass should be considered when evaluating competitive distance performance capability of elite cross-country skiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose was to determine the magnitude of aerobic and anaerobic performance factors among elite male football players in different team positions. Thirty-nine players from the highest Swedish division classified as defenders (n=18), midfield players (n=12) or attackers (n=9) participated. Their mean (± sd) age, height and body mass (bm) were 24.4 (±4.7) years, 1.80 (±5.9)m and 79 (±7.6)kg, respectively. Running economy (RE) and anaerobic threshold (AT) was determined at 10, 12, 14, and 16km/h followed by tests of maximal oxygen uptake (VO2max). Maximal strength (1RM) and average power output (AP) was performed in squat lifting. Squat jump (SJ), counter-movement jump with free arm swing (CMJa), 45m maximal sprint and the Wingate test was performed. Average VO2max for the whole population (WP) was 57.0mL O2•kg-1min-1 . The average AT occurred at about 84% of VO2max. 1RM per kg bm0.67 was 11.9±1.3kg. Average squat power in the whole population at 40% 1RM was 70±9.5W per kg bm0.67 . SJ and CMJa were 38.6±3.8cm and 48.9±4.4cm, respectively. The average sprint time (45m) was 5.78± 0.16s. The AP in the Wingate test was 10.6±0.9W•kg-1 . The average maximal oxygen uptake among players in the highest Swedish division was lower compared to international elite players but the Swedish players were better off concerning the anaerobic threshold and in the anaerobic tests. No significant differences were revealed between defenders, midfielders or attackers concerning the tested parameters presented above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose was to determine the magnitude of aerobic and anaerobic performance factors among elite male football players in different team positions. Thirty-nine players from the highest Swedish division classified as defenders (n=18), midfield players (n=12) or attackers (n=9) participated. Their mean (± sd) age, height and body mass (bm) were 24.4 (±4.7) years, 1.80 (±5.9)m and 79 (±7.6)kg, respectively. Running economy (RE) and anaerobic threshold (AT) was determined at 10, 12, 14, and 16km/h followed by tests of maximal oxygen uptake (VO2max). Maximal strength (1RM) and average power output (AP) was performed in squat lifting. Squat jump (SJ), counter-movement jump with free arm swing (CMJa), 45m maximal sprint and the Wingate test was performed. Average VO2max for the whole population (WP) was 57.0mL O2•kg-1min-1. The average AT occurred at about 84% of VO2max. 1RM per kg bm0.67 was 11.9±1.3kg. Average squat power in the whole population at 40% 1RM was70±9.5W per kg bm0.67. SJ and CMJa were 38.6±3.8cm and 48.9±4.4cm,respectively. The average sprint time (45m) was 5.78± 0.16s. The AP in the Wingate test was 10.6±0.9W•kg-1. The average maximal oxygen uptake among players in the highest Swedish division was lower compared to international elite players but the Swedish players were better off concerning the anaerobic threshold and in the anaerobic tests. No significant differences were revealed between defenders, midfielders or attackers concerning the tested parameters presented above.