23 resultados para Roof top PV

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of measurements on the performance of solar cell string modules with low-concentrating CPC reflectors with a concentration factor C ˜ 4X have been carried out. To minimise the reduction in efficiency due to high cell temperatures, the modules were cooled. Four different way of cooling were tested:1) The thermal mass of the module was increased, 2) passive air cooling was used by introducing a small air gap between the module and the reflector, 3) the PV cells were cooled by a large cooling fin, 4) the module was actively cooled by circulating cold water on the back. The best performance was given with the actively cooled PV module which gave 2,2 times the output from a reference module while for the output from the module with a cooling fin the value was 1,8.Active cooling is also interesting due to the possibility of co-generation of thermal and electrical energy which is discussed in the paper. Simulations, based on climate data from Stockholm, latitude 59.4°N, show that there are good prospects for producing useful temperatures of the cooling fluid with only a slightly reduced performance of the electrical fraction of the PV thermal hybrid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PV-Wind-Hybrid systems for stand-alone applications have the potential to be more cost efficient compared to PV-alone systems. The two energy sources can, to some extent, compensate each others minima. The combination of solar and wind should be especially favorable for locations at high latitudes such as Sweden with a very uneven distribution of solar radiation during the year. In this article PV-Wind-Hybrid systems have been studied for 11 locations in Sweden. These systems supply the household electricity for single family houses. The aim was to evaluate the system costs, the cost of energy generated by the PV-Wind-Hybrid systems, the effect of the load size and to what extent the combination of these two energy sources can reduce the costs compared to a PV-alone system. The study has been performed with the simulation tool HOMER developed by the National Renewable Energy Laboratory (NREL) for techno-economical feasibility studies of hybrid systems. The results from HOMER show that the net present costs (NPC) for a hybrid system designed for an annual load of 6000 kWh with a capacity shortage of 10% will vary between $48,000 and $87,000. Sizing the system for a load of 1800 kWh/year will give a NPC of $17,000 for the best and $33,000 for the worst location. PV-Wind-Hybrid systems are for all locations more cost effective compared to PV-alone systems. Using a Hybrid system is reducing the NPC for Borlänge by 36% and for Lund by 64%. The cost per kWh electricity varies between $1.4 for the worst location and $0.9 for the best location if a PV-Wind-Hybrid system is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one year data analysis for a micro PV-Wind hybrid system (0.52 kW + 1 kW), installed in Borlänge/Sweden is presented in this paper. The system performance was evaluated according the guidelines of the IEC 61724 standard. The parameters obtained allow a comparison with similar systems. The measurement data are also used to evaluate the sizing and operation of the hybrid system. In addition, the system was modelled in HOMER to study sizing options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the calculations was to estimate the most suitable slopes and azimuths for three different positions per day of a solar panel in order to obtain the most possible energy from the PV panel compared with a stationary PV panel. The calculations were made in the computer program PV F-CHART.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the number of bicycles with e-motors has been increased steadily. Within the pedelec – bikes where an e-motor supports the pedaling – a special group of transportation bikes has developed. These bikes have storage boxes in addition to the basic parts of a bike. Due to the space available on top of those boxes it is possible to install a PV system to generate electricity which could be used to recharge the battery of the pedelec. Such a system would lead to grid independent charging of the battery and to the possibility of an increased range of motor support. The feasibility of such a PV system is investigated for a three wheeled pedelec delivered by the company BABBOE NORDIC.The measured data of the electricity generation of this mobile system is compared to the possible electricity generation of a stationary system.To measure the consumption of the pedelec different tracks are covered, and the energy which is necessary to recharge the bike battery is measured using an energy logger. This recharge energy is used as an indirect measure of the electricity consumption. A PV prototype system is installed on the bike. It is a simple PV stand alone system consisting of PV panel, charge controller with MPP tracker and a solar battery. This system has the task to generate as much electricity as possible. The produced PV current and voltage aremeasured and documented using a data logger. Afterwards the average PV power is calculated. To compare the produced electricity of the on-bike system to that of a stationary system, the irradiance on the latter is measured simultaneously. Due to partial shadings on the on-bike PV panel, which are caused by the driver and some other bike parts, the average power output during riding the bike is very low. It is too low to support the motor directly. In case of a similar installation as the PV prototype system and the intention always to park the bike on a sunny spot an on-bike system could generate electricity to at least partly recharge a bike battery during one day. The stationary PV system using the same PV panel could have produced between 1.25 and 8.1 times as much as the on-bike PV system. Even though the investigation is done for a very specific case it can be concluded that anon-bike PV system, using similar components as in the investigation, is not feasible to recharge the battery of a pedelec in an appropriate manner. The biggest barrier is that partial shadings on the PV panel, which can be hardly avoided during operation and parking, result in a significant reduction of generated electricity. Also the installation of the on-bike PV system would lead to increased weight of the whole bike and the need for space which is reducing the storage capacity. To use solar energy for recharging a bike battery an indirect way is giving better results. In this case a stationary PV stand alone system is used which is located in a sunny spot without shadings and adjusted to use the maximum available solar energy. The battery of the bike is charged using the corresponding charger and an inverter which provides AC power using the captured solar energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A test and demonstration facility for PV and PV hybrid systems and system components has been designed and installed at Dalarna University in Sweden. The facility allows studies of complete PV systems or single components in a range of 0.1-10 kW. The facility includes two grid-connected PV systems, a PV Hybrid off-grid system, three emulators and the necessary measurement and control equipment. Tests can be done manually or automatically through programmed test procedures controlled that will be implemented in Labview. The facility shall be used by researchers, professionals of the industry and engineering students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis concerns the dimensioning of an Energy Storage System (ESS) which will be used as an energy buffer for a grid-connected PV plant. This ESS should help managing the PV plant to inject electricity into the grid according to the requirements of the grid System Operator. It is desired to obtain a final production not below 1300kWh/kWp with a maximum ESS budget of 0.9€/Wp. The PV plant will be sited in Martinique Island and connected to the main grid. This grid is a small one where the perturbations due clouds in the PV generation are not negligible anymore. A software simulation tool, incorporating a model for the PV-plant production, the ESS and the required injection pattern of electricity into the grid has been developed in MS Excel. This tool has been used to optimize the relevant parameters defining the ESS so that the feed-in of electricity into the grid can be controlled to fulfill the conditions given by the System Operator. The inputs used for this simulation tool are, besides the conditions given by the System Operator on the allowed injection pattern, the production data from a similar PV-plant in a close-by location, and variables for defining the ESS. The PV production data used is from a site with similar climate and weather conditions as for the site on the Martinique Island and hence gives information on the short term insolation variations as well as expected annual electricity production. The ESS capacity and the injected electric energy will be the main figures to compare while doing an economic study of the whole plant. Hence, the Net Present Value, Benefit to Cost method and Pay-back period studies are carried on as dependent of the ESS capacity. The conclusion of this work is that it is possible to obtain the requested injection pattern by using an ESS. The design of the ESS can be made within an acceptable budget. The capacity of ESS to link with the PV system depends on the priorities of the final output characteristics, and it also depends on which economic parameter that is chosen as a priority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In April 2011 a monitoring system was installed to enable studies of the performance and the usage of a micro PV-Diesel Hybrid system at the Ihushi Development Center (IDC) near Mwanza in Tanzania. Estimations of the load have been obtained by a survey of installed appliances and interviews with users of installed equipment. The load profile obtained by measurements has been analyzed and compared to estimations of the energy use. Further, the system size and performance were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction of household energy consumption is one of the top issues in contemporary discussions on sustainable consumption. This chapter concerns one way through which consumption of purchased energy for house heating can be reduced; by having a solar thermal system added to one's house. However, the fact that one of the components - the solar collector - usually is situated on the roof or the facade of a building, is a recurrent impediment to such installations. In certain contexts, these attributes may melt into the building, while in others, they may be perceived as problematic. The latter may particularly be the case when the appearance of the building is of major imiportance, as with houses deemed worthy of preservation for coming generations. This chapter draws upon a study carried out in Visby Town, a walled Hanseatic town and a World Heritage site on the island of Gotland, Sweden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low concentrator PV-T hybrid systems produce both electricity and thermal energy; this fact increases the overall efficiency of the system and reduces the cost of solar electricity. These systems use concentrators which are optical devices that concentrate sunlight on to solar cells and reduce expensive solar cell area. This thesis work deals with the thermal evaluation of a PV-T collector from Solarus.Firstly the thermal efficiency of the low concentrator collector was characterized for the thermal-collector without PV cells on the absorber. Only two types of paint were on the absorber, one for each trough of the collector. Both paints are black one is glossy and the other is dull,. The thermal efficiency at no temperature difference between collector and ambient for these two types of paint was 0.65 and 0.64 respectively; the U-value was 8.4 W/m2°C for the trough with the glossy type of paint and 8.6 W/m2°C for the trough with dull type of paint. The annual thermal output of these two paints was calculated for two different geographic locations, Casablanca, Morocco and Älvkarleby, Sweden.Secondly the thermal efficiency was defined for the PV-T collector with PV cells on the absorber. The PV cells cover 85% of the absorber, without any paint on the rest of the absorber area. We also tested how the electrical power output influences the thermal power output of the PV-T collector. The thermal and total performances for the PV-T collector were only characterized with reflector sides, because of the lack of time we could not characterize them with transparent sides also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis evaluates different sites for a weather measurement system and a suitable PV- simulation for University of Surabaya (UBAYA) in Indonesia/Java. The weather station is able to monitor all common weather phenomena including solar insolation. It is planned to use the data for scientific and educational purposes in the renewable energy studies. During evaluation and installation it falls into place that official specifications from global meteorological organizations could not be meet for some sensors caused by the conditions of UBAYA campus. After arranging the hardware the weather at the site was monitored for period of time. A comparison with different official sources from ground based and satellite bases measurements showed differences in wind and solar radiation. In some cases the monthly average solar insolation was deviating 42 % for satellite-based measurements. For the ground based it was less than 10 %. The average wind speed has a difference of 33 % compared to a source, which evaluated the wind power in Surabaya. The wind direction shows instabilities towards east compared with data from local weather station at the airport. PSET has the chance to get some investments to investigate photovoltaic on there own roof. With several simulations a suitable roof direction and the yearly and monthly outputs are shown. With a 7.7 kWpeak PV installation with the latest crystalline technology on the market 8.82 MWh/year could be achieved with weather data from 2012. Thin film technology could increase the value up to 9.13 MWh/year. However, the roofs have enough area to install PV. Finally the low price of electricity in Indonesia makes it not worth to feed in the energy into the public grid.