2 resultados para Ring defect

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Product verifications have become a cost-intensive and time-consuming aspect of modern electronics production, but with the onset of an ever-increasing miniaturisation, these aspects will become even more cumbersome. One may also go as far as to point out that certain precision assembly, such as within the biomedical sector, is legally bound to have 0 defects within production. Since miniaturisation and precision assembly will soon become a part of almost any product, the verifications phases of assembly need to be optimised in both functionality and cost. Another aspect relates to the stability and robustness of processes, a pre-requisite for flexibility. Furthermore, as the re-engineering cycle becomes ever more important, all information gathered within the ongoing process becomes vital. In view of these points, product, or process verification may be assumed to be an important and integral part of precision assembly. In this paper, product verification is defined as the process of determining whether or not the products, at a given phase in the life-cycle, fulfil the established specifications. Since the product is given its final form and function in the assembly, the product verification normally takes place somewhere in the assembly line which is the focus for this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in the field of ultracold gases has led to the production of degenerate samples of polar molecules. These have large static electric-dipole moments, which in turn causes the molecules to interact strongly. We investigate the interaction of polar particles in waveguide geometries subject to an applied polarizing field. For circular waveguides, tilting the direction of the polarizing field creates a periodic inhomogeneity of the interparticle interaction. We explore the consequences of geometry and interaction for stability of the ground state within the Thomas-Fermi model. Certain combinations of tilt angles and interaction strengths are found to preclude the existence of a stable Thomas-Fermi ground state. The system is shown to exhibit different behavior for quasi-one-dimensional and three-dimensional trapping geometries.