2 resultados para Regression imputation
em Dalarna University College Electronic Archive
Resumo:
In this paper, we study the influence of the National Telecom Business Volume by the data in 2008 that have been published in China Statistical Yearbook of Statistics. We illustrate the procedure of modeling “National Telecom Business Volume” on the following eight variables, GDP, Consumption Levels, Retail Sales of Social Consumer Goods Total Renovation Investment, the Local Telephone Exchange Capacity, Mobile Telephone Exchange Capacity, Mobile Phone End Users, and the Local Telephone End Users. The testing of heteroscedasticity and multicollinearity for model evaluation is included. We also consider AIC and BIC criterion to select independent variables, and conclude the result of the factors which are the optimal regression model for the amount of telecommunications business and the relation between independent variables and dependent variable. Based on the final results, we propose several recommendations about how to improve telecommunication services and promote the economic development.
Resumo:
This is a note about proxy variables and instruments for identification of structural parameters in regression models. We have experienced that in the econometric textbooks these two issues are treated separately, although in practice these two concepts are very often combined. Usually, proxy variables are inserted in instrument variable regressions with the motivation they are exogenous. Implicitly meaning they are exogenous in a reduced form model and not in a structural model. Actually if these variables are exogenous they should be redundant in the structural model, e.g. IQ as a proxy for ability. Valid proxies reduce unexplained variation and increases the efficiency of the estimator of the structural parameter of interest. This is especially important in situations when the instrument is weak. With a simple example we demonstrate what is required of a proxy and an instrument when they are combined. It turns out that when a researcher has a valid instrument the requirements on the proxy variable is weaker than if no such instrument exists