3 resultados para Reforestation.
em Dalarna University College Electronic Archive
Resumo:
In the keynote, major reforestation challenges in Scandinavia will be highlighted. The following countries make up Scandinavia: Iceland, Norway, Sweden, Finland and Denmark. For Iceland, with only a forest cover of 2%, a major reforestation challenge is the deforestation and overgrazing in combination with land degradation and extensive soil erosion. The challenges include the conflicts with livestock farmers. For centuries the commons were used for sheep and horse grazing. However, more and more of farmer grazing land have been fenced up, allowing the regeneration of birch and plantations of other species to increase. With a forest cover of 37% and 69% respectively, for decades a major reforestation challenge in Norway and Sweden has been the risk of seedling damages from the pine weevil. Unprotected seedlings can have a survival rate of less than 25% after being planted. Pine weevils feed on the bark of planted young seedlings at regeneration sites. If the seedling is girdled, it will not survive. In Sweden, and soon in Norway, pesticides have been forbidden. In the keynote, new methods and technology will be presented based on non-chemical protection. In Finland, with a forest cover of 75%, a major reforestation challenge is linked to the forest structure. The structure of Finnish forestry includes many private forests in combination with small regeneration sites. This implies a situation where logistics and methods for lifting and field storage provide a major challenge in order to preserve seedling quality until the planting date. Due to this situation, new logistic systems and technologies are being developed in Finland, including new seedling cultivation programs (including cultivation under Light Emitting Diodes (LEDs)) to match the access of fresh planting stock to different planting dates. In Denmark, with a forest cover of 13%, a major reforestation challenge is the possibility of future plantations based on a wide range of relevant species. For this to become a realistic option, new methods and technology have to be developed in reforestation activities that support this possibility. These methods and technology should make it possible to not be limited to certain species due to problems and restrictions during field establishment. This due to the prospect of establishing stable, healthy, and productive stands of various forest species that can be adapted to future climate change.
Resumo:
Forest nurseries are essential for producing good quality seedlings, thus being a key element in the reforestation process. With increasing climate change awareness, nursery managers are looking for new tools that can help reduce the effects of their operations on the environment. The ZEPHYR project, funded by the European Commission under the Seventh Framework Programme (FP7), has the objective of finding new alternatives for nurseries by developing innovative zero-impact technologies for forest plant production. Due to their direct relationship to the energy consumption of the nurseries, one of the main elements addressed are the grow lights used for the pre-cultivation. New LED luminaires with a light spectrum tailored to the seedlings’ needs are being studied and compared against the traditional fluorescent lamps. Seedlings of Picea abies and Pinus sylvestris were grown under five different light spectra (one fluorescent and 4 LED) during 5 weeks with a photoperiod of 16 hours at 100 μmol∙m-2∙s-1 and 60% humidity. In order to evaluate if these seedlings were able cope with real field stress conditions, a forest field trial was also designed. The terrain chosen was a typical planting site in mid-Sweden after clear-cutting. Two vegetation periods after the outplanting, the seedlings that were pre-cultivated under the LED lamps have performed at least as well as those that were grown under fluorescent lights. These results show that there is a good potential for lightning substitution in forestry nurseries.
Resumo:
Sustainable methods are required to protect newly planted tree seedlings from insect herbivore attack. To this end, here Norway spruce (Picea abies (L.) Karst.) seeds were treated with 2.5 mM nicotinamide (NIC), 2.5 mM nicotinic acid (NIA), 3 mM jasmonic acid (JA) or 0.2 mM 5-azacytidine (5-Aza), and 6-month-old seedlings grown from these seeds were planted at a reforestation area in central Sweden. Attack by pine weevils (Hylobius abietis) was reduced by 50 per cent by NIC treatment, 62.5 per cent by JA treatment and 25 per cent by 5-Aza treatment, when compared with seedlings grown from untreated seeds. Watering 18-month-old spruce seedlings with 2 mM NIC or 2 mM NIA did reduce attack during the first season in the field by 40 and 53 per cent, respectively, compared with untreated plants. Girdling was also reduced by the different treatments. Analysis of conifer seedlings treated with 5-Aza points at a possible involvement of epigenetic mechanisms in this defensive capacity. This is supported by a reduced level of DNA methylation in the needles of young spruce seedlings grown in a greenhouse from NIC-treated seeds. Seed treatment for seedling defense potentiation is simple, inexpensive and also a new approach for forestry with many potential applications.