7 resultados para Reflectors

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different concentrating mirrors have been constructed that resemble parabolic dish reflectors. Both mirrors are made of slightly curved strips of flat, bendable material. The strips of the most simplified mirror have only large-radius circles and straight lines as boundaries. The necessary equations for making the mirrors have been derived. Also a simple way to make a stiff, lightweight frame and support for the mirror strips has been developed. Models of the mirrors have been built and successfully used for cooking and baking.This report is an extended version of a paper to be published in Solar Energy that contains complete derivations of all mirror design equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis project is a part of the research conducted in Solar industry. ABSOLICON Solar Concentrator AB has invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate distribution of density of solar radiation in the focal line of the concentrated parabolic reflectors and to measure radiation from the artificial source of light being a calibration-testing tool.On the basis of the requirements of the company’s administration and needs of designing the concentrated reflectors the operation conditions for the Sun-Walker were formulated. As the first step, the complex design of the whole system was made and division on the parts was specified. After the preliminary conducted simulation of the functions and operation conditions of the all parts were formulated.As the next steps, the detailed design of all the parts was made. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Sun-Walker were assembled and tested. The software part, which controls the Sun-Walker work and conducts measurements of solar irradiation, was created on the LabVIEW basis. To tune and test the software part, the special simulator was designed and assembled.When all parts were assembled in the complete system, the Sun-Walker was tested, calibrated and tuned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Sweden solar irradiation and space heating loads are unevenly distributed over the year. Domestic hot water loads may be nearly constant. Test results on solar collector performance are often reported as yearly output of a certain collector at fixed temperatures, e g 25, 50 and 75 C. These data are not suitable for dimensioning of solar systems, because the actual performance of the collector depends heavily on solar fraction and load distribution over the year.At higher latitudes it is difficult to attain high solar fractions for buildings, due to overheating in summer and small marginal output for added collector area. Solar collectors with internal reflectors offer possibilities to evade overheating problems and deliver more energy at seasons when the load is higher. There are methods for estimating the yearly angular irradiation distribution, but there is a lack of methods for describing the load and the storage in such a way as to enable optical design of season and load adapted collectors.This report describes two methods for estimation of solar system performance with relevance for season and load adaption. Results regarding attainable solar fractions as a function of collector features, load profiles, load levels and storage characteristics are reported. The first method uses monthly collector output data at fixed temperatures from the simulation program MINSUN for estimating solar fractions for different load profiles and load levels. The load level is defined as estimated yearly collector output at constant collector temperature divided be yearly load. This table may examplify the results:CollectorLoadLoadSolar Improvementtypeprofile levelfractionover flat plateFlat plateDHW 75 %59 %Load adaptedDHW 75 %66 %12 %Flat plateSpace heating 50 %22 %Load adaptedSpace heating 50 %28 %29 %The second method utilises simulations with one-hour timesteps for collectors connected to a simplified storage and a variable load. Collector output, optical and thermal losses, heat overproduction, load level and storage temperature are presented as functions of solar incidence angles. These data are suitable for optical design of load adapted solar collectors. Results for a Stockholm location indicate that a solar combisystem with a solar fraction around 30 % should have collectors that reduce heat production at solar heights above 30 degrees and have optimum efficiency for solar heights between 8 and 30 degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of measurements on the performance of solar cell string modules with low-concentrating CPC reflectors with a concentration factor C ˜ 4X have been carried out. To minimise the reduction in efficiency due to high cell temperatures, the modules were cooled. Four different way of cooling were tested:1) The thermal mass of the module was increased, 2) passive air cooling was used by introducing a small air gap between the module and the reflector, 3) the PV cells were cooled by a large cooling fin, 4) the module was actively cooled by circulating cold water on the back. The best performance was given with the actively cooled PV module which gave 2,2 times the output from a reference module while for the output from the module with a cooling fin the value was 1,8.Active cooling is also interesting due to the possibility of co-generation of thermal and electrical energy which is discussed in the paper. Simulations, based on climate data from Stockholm, latitude 59.4°N, show that there are good prospects for producing useful temperatures of the cooling fluid with only a slightly reduced performance of the electrical fraction of the PV thermal hybrid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the work is to develop a cost effective semistationary CPC concentrator for a string PV-module. A novel method of using annual irradiation distribution diagram projected in a north-south vertical plane is developed. This method allows us easily to determine the optimum acceptance angle of the concentrator and the required number of annual tilts. Concentration ranges of 2-5x are investigated with corresponding acceptance angles between 5 and 15°. The concentrator should be tilted 2-6 times per year. Experiments has been performed on a string module of 10 cells connected in a series and equipped with a compound parabolic concentrator with C = 3.3X. Measurement show that the output will increase with a factor of 2-2.5 for the concentrator module, compared to a reference module without concentrator. If very cheap aluminium reflectors are used the costs for the PV-module can be decreased nearly by a factor of two.