4 resultados para Recognition of victims

em Dalarna University College Electronic Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since last two decades researches have been working on developing systems that can assistsdrivers in the best way possible and make driving safe. Computer vision has played a crucialpart in design of these systems. With the introduction of vision techniques variousautonomous and robust real-time traffic automation systems have been designed such asTraffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among theseautomatic detection and recognition of road signs has became an interesting research topic.The system can assist drivers about signs they don’t recognize before passing them.Aim of this research project is to present an Intelligent Road Sign Recognition System basedon state-of-the-art technique, the Support Vector Machine. The project is an extension to thework done at ITS research Platform at Dalarna University [25]. Focus of this research work ison the recognition of road signs under analysis. When classifying an image its location, sizeand orientation in the image plane are its irrelevant features and one way to get rid of thisambiguity is to extract those features which are invariant under the above mentionedtransformation. These invariant features are then used in Support Vector Machine forclassification. Support Vector Machine is a supervised learning machine that solves problemin higher dimension with the help of Kernel functions and is best know for classificationproblems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report presents an algorithm for locating the cut points for and separatingvertically attached traffic signs in Sweden. This algorithm provides severaladvanced digital image processing features: binary image which representsvisual object and its complex rectangle background with number one and zerorespectively, improved cross correlation which shows the similarity of 2Dobjects and filters traffic sign candidates, simplified shape decompositionwhich smoothes contour of visual object iteratively in order to reduce whitenoises, flipping point detection which locates black noises candidates, chasmfilling algorithm which eliminates black noises, determines the final cut pointsand separates originally attached traffic signs into individual ones. At each step,the mediate results as well as the efficiency in practice would be presented toshow the advantages and disadvantages of the developed algorithm. Thisreport concentrates on contour-based recognition of Swedish traffic signs. Thegeneral shapes cover upward triangle, downward triangle, circle, rectangle andoctagon. At last, a demonstration program would be presented to show howthe algorithm works in real-time environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forgiveness, reconciliation and implacability in narratives of survivors after the war in Bosnia and Herzegovina In this article I analyze verbally portrayed experiences of 27 survivors from the 1990s’ war in Bosnia and Herzegovina. One aim of the article is to analyze markers for reconciliation and implacability, the second is to describe the terms for reconciliation which are actualized in those stories. The interactive dynamics, which occurred during the war, make the post-war reconciliation wartime associated. Narratives about reconciliation, implacability and terms for reconciliation, are not only formed in relation to the war as a whole but also in relation to one’s own and others’ wartime actions. The narratives about reconciliation become an arena in which we and them are played against each other in different ways – not least by rejecting the others’ acts during the war. In the interviewees stories implacability is predominant but reconciliation is presented as a possibility if certain conditions are met. These conditions are, for instance, justice for war victims, perpetrators’ recognition of crime and perpetrators’ emotional commitment (for example the display of remorse and shame).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.