9 resultados para Rating Scale
em Dalarna University College Electronic Archive
Resumo:
The aim of this work was to design a set of rules for levodopa infusion dose adjustment in Parkinson’s disease based on a simulation experiments. Using this simulator, optimal infusions dose in different conditions were calculated. There are seven conditions (-3 to +3)appearing in a rating scale for Parkinson’s disease patients. By finding mean of the differences between conditions and optimal dose, two sets of rules were designed. The set of rules was optimized by several testing. Usefulness for optimizing the titration procedure of new infusion patients based on rule-based reasoning was investigated. Results show that both of the number of the steps and the errors for finding optimal dose was shorten by new rules. At last, the dose predicted with new rules well on each single occasion of majority of patients in simulation experiments.
Resumo:
The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.
Resumo:
Objective: We present a new evaluation of levodopa plasma concentrations and clinical effects during duodenal infusion of a levodopa/carbidopa gel (Duodopa ) in 12 patients with advanced Parkinson s disease (PD), from a study reported previously (Nyholm et al, Clin Neuropharmacol 2003; 26(3): 156-163). One objective was to investigate in what state of PD we can see the greatest benefits with infusion compared with corresponding oral treatment (Sinemet CR). Another objective was to identify fluctuating response to levodopa and correlate to variables related to disease progression. Methods: We have computed mean absolute error (MAE) and mean squared error (MSE) for the clinical rating from -3 (severe parkinsonism) to +3 (severe dyskinesia) as measures of the clinical state over the treatment periods of the study. Standard deviation (SD) of the rating was used as a measure of response fluctuations. Linear regression and visual inspection of graphs were used to estimate relationships between these measures and variables related to disease progression such as years on levodopa (YLD) or unified PD rating scale part II (UPDRS II).Results: We found that MAE for infusion had a strong linear correlation to YLD (r2=0.80) while the corresponding relation for oral treatment looked more sigmoid, particularly for the more advanced patients (YLD>18).
Resumo:
Background: A mobile device test battery, consisting of a patient diary collection section with disease-related questions and a fine motor test section (including spiral drawing tasks), was used by 65 patients with advanced Parkinson's disease (PD)(treated with intraduodenal levodopa/carbidopa gel infusion, Duodopa®, or candidates for this treatment) on 10439 test occasions in their home environments. On each occasion, patients traced three pre-drawn Archimedes spirals using an ergonomic stylus and self-assessed their motor function on a global Treatment Response Scale (TRS) ranging from -3 = very 'off' to 0 = 'on' to +3 = very dyskinetic. The spirals were processed by a computer-based method that generates a "spiral score" representing the PD-related drawing impairment. The scale for the score was based on a modified Bain & Findley rating scale in the range from 0 = no impairment to 5 = moderate impairment to 10 = extremely severe impairment. Objective: To analyze the test battery data for the purpose to find differences in spiral drawing performance of PD patients in relation to their self-assessments of motor function. Methods: Three motor states were used in the analysis; OFF state (including moderate and very 'off'), ON state ('on') and a dyskinetic (DYS) state (moderate and very dyskinetic). In order to avoid the problem of multiple test occasions per patient, 200 random samples of single test occasions per patient were drawn. One-way analysis of variance, ANOVA, test followed by Tukey multiple comparisons test was used to test if mean values of spiral test parameters, i.e. the spiral score and drawing completion times (in seconds), were different among the three motor states. Statistical significance was set at p<0.05. To investigate changes in the spiral score over the time-of-day test sessions for the three motor states, plots of statistical summaries were inspected. Results: The mean spiral score differed significantly across the three self-assessed motor states (p<0.001, ANOVA test). Tukey post-hoc comparisons indicate that the mean spiral score (mean ± SD; [95% CI for mean]) in DYS state (5.2 ± 1.8; [5.12, 5.28]) was higher than the mean spiral score in OFF (4.3 ± 1.7; [4.22, 4.37]) and ON (4.2 ± 1.7; [4.17, 4.29]) states. The mean spiral score was also significantly different among individual TRS values of slightly 'off' (4.02 ± 1.63), 'on' (4.07 ± 1.65) and slightly dyskinetic (4.6 ± 1.71), (p<0.001). There were no differences in drawing completion times among the three motor states (p=0.509). In the OFF and ON states, patients drew slightly more impaired spirals in the afternoon whereas in the DYS state the spiral drawing performance was more impaired in the morning. Conclusion: It was found that when patients considered themselves as being dyskinetic spiral drawing was more impaired (nearly one unit change in a 0-10 scale) compared to when they considered themselves as being 'off' and 'on'. The spiral drawing at patients that self-assessed their motor state as dyskinetic was slightly more impaired in the morning hours, between 8 and 12 o'clock, a situation possibly caused by the morning dose effect.
Resumo:
This paper presents the development and evaluation of a method for enabling quantitative and automatic scoring of alternating tapping performance of patients with Parkinson’s disease (PD). Ten healthy elderly subjects and 95 patients in different clinical stages of PD have utilized a touch-pad handheld computer to perform alternate tapping tests in their home environments. First, a neurologist used a web-based system to visually assess impairments in four tapping dimensions (‘speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’) and a global tapping severity (GTS). Second, tapping signals were processed with time series analysis and statistical methods to derive 24 quantitative parameters. Third, principal component analysis was used to reduce the dimensions of these parameters and to obtain scores for the four dimensions. Finally, a logistic regression classifier was trained using a 10-fold stratified cross-validation to map the reduced parameters to the corresponding visually assessed GTS scores. Results showed that the computed scores correlated well to visually assessed scores and were significantly different across Unified Parkinson’s Disease Rating Scale scores of upper limb motor performance. In addition, they had good internal consistency, had good ability to discriminate between healthy elderly and patients in different disease stages, had good sensitivity to treatment interventions and could reflect the natural disease progression over time. In conclusion, the automatic method can be useful to objectively assess the tapping performance of PD patients and can be included in telemedicine tools for remote monitoring of tapping.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.
Resumo:
Objective: To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT). Background: The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced. Methods: A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT. The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged. Results: A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments. Conclusions: The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings
Resumo:
The aim of this study was to investigate if a telemetry test battery can be used to measure effects of Parkinson’s disease (PD) treatment intervention and disease progression in patients with fluctuations. Sixty-five patients diagnosed with advanced PD were recruited in an open longitudinal 36-month study; 35 treated with levodopa-carbidopa intestinal gel (LCIG) and 30 were candidates for switching from oral PD treatment to LCIG. They utilized a test battery, consisting of self-assessments of symptoms and fine motor tests (tapping and spiral drawings), four times per day in their homes during week-long test periods. The repeated measurements were summarized into an overall test score (OTS) to represent the global condition of the patient during a test period. Clinical assessments included ratings on Unified PD Rating Scale (UPDRS) and 39-item PD Questionnaire (PDQ-39) scales. In LCIG-naïve patients, mean OTS compared to baseline was significantly improved from the first test period on LCIG treatment until month 24. In LCIG-non-naïve patients, there were no significant changes in mean OTS until month 36. The OTS correlated adequately with total UPDRS (rho = 0.59) and total PDQ-39 (0.59). Responsiveness measured as effect size was 0.696 and 0.536 for OTS and UPDRS respectively. The trends of the test scores were similar to the trends of clinical rating scores but dropout rate was high. Correlations between OTS and clinical rating scales were adequate indicating that the test battery contains important elements of the information of well-established scales. The responsiveness and reproducibility were better for OTS than for total UPDRS.
Resumo:
Objective: ‘Music Therapeutic Caregiving’, when caregivers sing for or together with persons with dementia during morning care situations, has been shown to increase verbal and nonverbal communication between persons with dementia and their caregivers, as well as enhance positive and decrease negative emotions in persons with dementia. No studies about singing during mealtimes have been conducted, and this pilot project was designed to elucidate this. However, since previous studies have shown that there is a risk that persons with dementia will start to sing along with the caregiver, the caregiver in this study hummed such that the person with dementia did not sing instead of eat. The aim of this pilot project was threefold: to describe expressed emotions in a woman with severe dementia, and describe communication between her and her caregivers without and with the caregiver humming. The aim was also to measure food and liquid intake without and with humming. Method: The study was constructed as a Single Case ABA design in which the ordinary mealtime constituted a baseline which comprised a woman with severe dementia being fed by her caregivers in the usual way. The intervention included the same woman being fed by the same caregiver who hummed while feeding her. Data comprised video observations that were collected once per week over 5 consecutive weeks. The Verbal and Nonverbal Interaction Scale and Observed Emotion Rating Scale were used to analyze the recorded interactions. Results: A slightly positive influence of communication was shown for the woman with dementia, as well as for the caregiver. Further, the women with dementia showed a slight increase in expressions of positive emotions, and she ate more during the intervention. Conclusion: Based on this pilot study no general conclusions can be drawn. It can be concluded, however, that humming while feeding persons with dementia might slightly enhance communication, and positive expressed emotions in persons with dementia. To confirm this, more studies on group levels are needed. Because previous studies have found that caregiver singing during caring situations influences persons with dementia positively it might be desirable to test the same during mealtime.