8 resultados para Random regression models

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random effect models have been widely applied in many fields of research. However, models with uncertain design matrices for random effects have been little investigated before. In some applications with such problems, an expectation method has been used for simplicity. This method does not include the extra information of uncertainty in the design matrix is not included. The closed solution for this problem is generally difficult to attain. We therefore propose an two-step algorithm for estimating the parameters, especially the variance components in the model. The implementation is based on Monte Carlo approximation and a Newton-Raphson-based EM algorithm. As an example, a simulated genetics dataset was analyzed. The results showed that the proportion of the total variance explained by the random effects was accurately estimated, which was highly underestimated by the expectation method. By introducing heuristic search and optimization methods, the algorithm can possibly be developed to infer the 'model-based' best design matrix and the corresponding best estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper studies a smooth-transition (ST) type cointegration. The proposed ST cointegration allows for regime switching structure in a cointegrated system. It nests the linear cointegration developed by Engle and Granger (1987) and the threshold cointegration studied by Balke and Fomby (1997). We develop F-type tests to examine linear cointegration against ST cointegration in ST-type cointegrating regression models with or without time trends. The null asymptotic distributions of the tests are derived with stationary transition variables in ST cointegrating regression models. And it is shown that our tests have nonstandard limiting distributions expressed in terms of standard Brownian motion when regressors are pure random walks, while have standard asymptotic distributions when regressors contain random walks with nonzero drift. Finite-sample distributions of those tests are studied by Monto Carlo simulations. The small-sample performance of the tests states that our F-type tests have a better power when the system contains ST cointegration than when the system is linearly cointegrated. An empirical example for the purchasing power parity (PPP) data (monthly US dollar, Italy lira and dollar-lira exchange rate from 1973:01 to 1989:10) is illustrated by applying the testing procedures in this paper. It is found that there is no linear cointegration in the system, but there exits the ST-type cointegration in the PPP data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is a note about proxy variables and instruments for identification of structural parameters in regression models. We have experienced that in the econometric textbooks these two issues are treated separately, although in practice these two concepts are very often combined. Usually, proxy variables are inserted in instrument variable regressions with the motivation they are exogenous. Implicitly meaning they are exogenous in a reduced form model and not in a structural model. Actually if these variables are exogenous they should be redundant in the structural model, e.g. IQ as a proxy for ability. Valid proxies reduce unexplained variation and increases the efficiency of the estimator of the structural parameter of interest. This is especially important in situations when the instrument is weak. With a simple example we demonstrate what is required of a proxy and an instrument when they are combined. It turns out that when a researcher has a valid instrument the requirements on the proxy variable is weaker than if no such instrument exists

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision.  Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes.  The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Evidence-based practice (EBP) is emphasized to increase the quality of care and patient safety. EBP is often described as a process consisting of distinct activities including, formulating questions, searching for information, compiling the appraised information, implementing evidence, and evaluating the resulting practice. To increase registered nurses' (RNs') practice of EBP, variables associated with such activities need to be explored. The aim of the study was to examine individual and organizational factors associated with EBP activities among RNs 2 years post graduation. Methods: A cross-sectional design based on a national sample of RNs was used. Data were collected in 2007 from a cohort of RNs, included in the Swedish Longitudinal Analyses of Nursing Education/Employment study. The sample consisted of 1256 RNs (response rate 76%). Of these 987 RNs worked in healthcare at the time of the data collection. Data was self-reported and collected through annual postal surveys. EBP activities were measured using six single items along with instruments measuring individual and work-related variables. Data were analyzed using logistic regression models. Results: Associated factors were identified for all six EBP activities. Capability beliefs regarding EBP was a significant factor for all six activities (OR = 2.6 - 7.3). Working in the care of older people was associated with a high extent of practicing four activities (OR = 1.7 - 2.2). Supportive leadership and high collective efficacy were associated with practicing three activities (OR = 1.4 - 2.0). Conclusions: To be successful in enhancing EBP among newly graduated RNs, strategies need to incorporate both individually and organizationally directed factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Soluble tumor necrosis factor receptors 1 and 2 (sTNFR1 and sTNFR2) contribute to experimental diabetic kidney disease, a condition with substantially increased cardiovascular risk when present in patients. Therefore, we aimed to explore the levels of sTNFRs, and their association with prevalent kidney disease, incident cardiovascular disease, and risk of mortality independently of baseline kidney function and microalbuminuria in a cohort of patients with type 2 diabetes. In pre-defined secondary analyses we also investigated whether the sTNFRs predict adverse outcome in the absence of diabetic kidney disease. METHODS: The CARDIPP study, a cohort study of 607 diabetes patients [mean age 61 years, 44 % women, 45 cardiovascular events (fatal/non-fatal myocardial infarction or stroke) and 44 deaths during follow-up (mean 7.6 years)] was used. RESULTS: Higher sTNFR1 and sTNFR2 were associated with higher odds of prevalent kidney disease [odd ratio (OR) per standard deviation (SD) increase 1.60, 95 % confidence interval (CI) 1.32-1.93, p < 0.001 and OR 1.54, 95 % CI 1.21-1.97, p = 0.001, respectively]. In Cox regression models adjusting for age, sex, glomerular filtration rate and urinary albumin/creatinine ratio, higher sTNFR1 and sTNFR2 predicted incident cardiovascular events [hazard ratio (HR) per SD increase, 1.66, 95 % CI 1.29-2.174, p < 0.001 and HR 1.47, 95 % CI 1.13-1.91, p = 0.004, respectively]. Results were similar in separate models with adjustments for inflammatory markers, HbA1c, or established cardiovascular risk factors, or when participants with diabetic kidney disease at baseline were excluded (p < 0.01 for all). Both sTNFRs were associated with mortality. CONCLUSIONS/INTERPRETATIONS: Higher circulating sTNFR1 and sTNFR2 are associated with diabetic kidney disease, and predicts incident cardiovascular disease and mortality independently of microalbuminuria and kidney function, even in those without kidney disease. Our findings support the clinical utility of sTNFRs as prognostic markers in type 2 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The role of inflammation and oxidative stress in mild renal impairment in the elderly is not well studied. Accordingly, we aimed at investigating the associations between estimated glomerular filtration rate (eGFR), albumin/creatinine ratio (ACR), and markers of different inflammatory pathways and oxidative stress in a community based cohort of elderly men. FINDINGS: Cystatin C-based GFR, ACR, and biomarkers of cytokine-mediated inflammation (interleukin-6, high-sensitivity C-reactive protein[CRP], serum amyloid A[SAA]), cyclooxygenase-mediated inflammation (urinary prostaglandin F2alpha [PGF2alpha]), and oxidative stress (urinary F2 isoprostanes) were assessed in the Uppsala Longitudinal Study of Adult Men(n = 647, mean age 77 years). RESULTS: In linear regression models adjusting for age, BMI, smoking, blood pressure, LDL-cholesterol, HDL-cholesterol, triglycerides, and treatment with statins, ACE-inhibitors, ASA, and anti-inflammatory agents, eGFR was inversely associated with CRP, interleukin-6, and SAA (beta-coefficient -0.13 to -0.19, p < 0.001 for all), and positively associated with urinary F2-isoprostanes (beta-coefficient 0.09, p = 0.02). In line with this, ACR was positively associated with CRP, interleukin-6, and SAA (beta- coefficient 0.09-0.12, p < 0.02 for all), and negatively associated with urinary F2-isoprostanes (beta-coefficient -0.12, p = 0.002). The associations were similar but with lower regression coefficients in a sub-sample with normal eGFR (>60 ml/min/1.73 m2, n = 514), with the exception that F2-isoprostane and SAA were no longer associated with eGFR. CONCLUSION: Our data indicate that cytokine-mediated inflammation is involved in the early stages of impaired kidney function in the elderly, but that cyclooxygenase-mediated inflammation does not play a role at this stage. The unexpected association between higher eGFR/lower albuminuria and increased F2-isoprostanes in urine merits further studies.