2 resultados para Random Walks
em Dalarna University College Electronic Archive
Resumo:
This paper studies a smooth-transition (ST) type cointegration. The proposed ST cointegration allows for regime switching structure in a cointegrated system. It nests the linear cointegration developed by Engle and Granger (1987) and the threshold cointegration studied by Balke and Fomby (1997). We develop F-type tests to examine linear cointegration against ST cointegration in ST-type cointegrating regression models with or without time trends. The null asymptotic distributions of the tests are derived with stationary transition variables in ST cointegrating regression models. And it is shown that our tests have nonstandard limiting distributions expressed in terms of standard Brownian motion when regressors are pure random walks, while have standard asymptotic distributions when regressors contain random walks with nonzero drift. Finite-sample distributions of those tests are studied by Monto Carlo simulations. The small-sample performance of the tests states that our F-type tests have a better power when the system contains ST cointegration than when the system is linearly cointegrated. An empirical example for the purchasing power parity (PPP) data (monthly US dollar, Italy lira and dollar-lira exchange rate from 1973:01 to 1989:10) is illustrated by applying the testing procedures in this paper. It is found that there is no linear cointegration in the system, but there exits the ST-type cointegration in the PPP data.
Resumo:
Random effect models have been widely applied in many fields of research. However, models with uncertain design matrices for random effects have been little investigated before. In some applications with such problems, an expectation method has been used for simplicity. This method does not include the extra information of uncertainty in the design matrix is not included. The closed solution for this problem is generally difficult to attain. We therefore propose an two-step algorithm for estimating the parameters, especially the variance components in the model. The implementation is based on Monte Carlo approximation and a Newton-Raphson-based EM algorithm. As an example, a simulated genetics dataset was analyzed. The results showed that the proportion of the total variance explained by the random effects was accurately estimated, which was highly underestimated by the expectation method. By introducing heuristic search and optimization methods, the algorithm can possibly be developed to infer the 'model-based' best design matrix and the corresponding best estimates.