7 resultados para ROAD UTILITY VEHICLE

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cost of a road construction over its service life is a function of the design, quality of construction, maintenance strategies and maintenance operations. Unfortunately, designers often neglect a very important aspect which is the possibility to perform future maintenance activities. The focus is mainly on other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This licentiate thesis is a part of a Ph.D. project entitled “Road Design for lower maintenance costs” that aims to examine how the life-cycle costs can be optimized by selection of appropriate geometrical designs for the roads and their components. The result is expected to give a basis for a new method used in the road planning and design process using life-cycle cost analysis with particular emphasis on road maintenance. The project started with a review of literature with the intention to study conditions causing increased needs for road maintenance, the efforts made by the road authorities to satisfy those needs and the improvement potential by consideration of maintenance aspects during planning and design. An investigation was carried out to identify the problems which obstruct due consideration of maintenance aspects during the road planning and design process. This investigation focused mainly on the road planning and design process at the Swedish Road Administration. However, the road planning and design process in Denmark, Finland and Norway were also roughly evaluated to gain a broader knowledge about the research subject. The investigation was carried out in two phases: data collection and data analysis. Data was collected by semi-structured interviews with expert actors involved in planning, design and maintenance and by a review of design-related documents. Data analyses were carried out using a method called “Change Analysis”. This investigation revealed a complex combination of problems which result in inadequate consideration of maintenance aspects. Several urgent needs for changes to eliminate these problems were identified. Another study was carried out to develop a model for calculation of the repair costs for damages of different road barrier types and to analyse how factors such as road type, speed limits, barrier types, barrier placement, type of road section, alignment and seasonal effects affect the barrier damages and the associated repair costs. This study was carried out using a method called the “Case Study Research Method”. Data was collected from 1087 barrier repairs in two regional offices of the Swedish Road Administration, the Central Region and the Western Region. A table was established for both regions containing the repair cost per vehicle kilometre for different combinations of barrier types, road types and speed limits. This table can be used by the designers in the calculation of the life-cycle costs for different road barrier types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cost of a road construction over its service life is a function of design, quality of construction as well as maintenance strategies and operations. An optimal life-cycle cost for a road requires evaluations of the above mentioned components. Unfortunately, road designers often neglect a very important aspect, namely, the possibility to perform future maintenance activities. Focus is mainly directed towards other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This doctoral thesis presents the results of a research project aimed to increase consideration of road maintenance aspects in the planning and design process. The following subgoals were established: Identify the obstacles that prevent adequate consideration of future maintenance during the road planning and design process; and Examine optimisation of life-cycle costs as an approach towards increased efficiency during the road planning and design process. The research project started with a literature review aimed at evaluating the extent to which maintenance aspects are considered during road planning and design as an improvement potential for maintenance efficiency. Efforts made by road authorities to increase efficiency, especially maintenance efficiency, were evaluated. The results indicated that all the evaluated efforts had one thing in common, namely ignorance of the interrelationship between geometrical road design and maintenance as an effective tool to increase maintenance efficiency. Focus has mainly been on improving operating practises and maintenance procedures. This fact might also explain why some efforts to increase maintenance efficiency have been less successful. An investigation was conducted to identify the problems and difficulties, which obstruct due consideration of maintainability during the road planning and design process. A method called “Change Analysis” was used to analyse data collected during interviews with experts in road design and maintenance. The study indicated a complex combination of problems which result in inadequate consideration of maintenance aspects when planning and designing roads. The identified problems were classified into six categories: insufficient consulting, insufficient knowledge, regulations and specifications without consideration of maintenance aspects, insufficient planning and design activities, inadequate organisation and demands from other authorities. Several urgent needs for changes to eliminate these problems were identified. One of the problems identified in the above mentioned study as an obstacle for due consideration of maintenance aspects during road design was the absence of a model for calculating life-cycle costs for roads. Because of this lack of knowledge, the research project focused on implementing a new approach for calculating and analysing life-cycle costs for roads with emphasis on the relationship between road design and road maintainability. Road barriers were chosen as an example. The ambition is to develop this approach to cover other road components at a later stage. A study was conducted to quantify repair rates for barriers and associated repair costs as one of the major maintenance costs for road barriers. A method called “Case Study Research Method” was used to analyse the effect of several factors on barrier repairs costs, such as barrier type, road type, posted speed and seasonal effect. The analyses were based on documented data associated with 1625 repairs conducted in four different geographical regions in Sweden during 2006. A model for calculation of average repair costs per vehicle kilometres was created. Significant differences in the barrier repair costs were found between the studied barrier types. In another study, the injuries associated with road barrier collisions and the corresponding influencing factors were analysed. The analyses in this study were based on documented data from actual barrier collisions between 2005 and 2008 in Sweden. The result was used to calculate the cost for injuries associated with barrier collisions as a part of the socio-economic cost for road barriers. The results showed significant differences in the number of injuries associated with collisions with different barrier types. To calculate and analyse life-cycle costs for road barriers a new approach was developed based on a method called “Activity-based Life-cycle Costing”. By modelling uncertainties, the presented approach gives a possibility to identify and analyse factors crucial for optimising life-cycle costs. The study showed a great potential to increase road maintenance efficiency through road design. It also showed that road components with low investment costs might not be the best choice when including maintenance and socio-economic aspects. The difficulties and problems faced during the collection of data for calculating life-cycle costs for road barriers indicated a great need for improving current data collecting and archiving procedures. The research focused on Swedish road planning and design. However, the conclusions can be applied to other Nordic countries, where weather conditions and road design practices are similar. The general methodological approaches used in this research project may be applied also to other studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the effectiveness of vehicle activated signs. Vehicle activated signs are being reportedly used in recent years to display dynamic information to road users on an individual basis in order to give a warning or inform about a specific event. Vehicle activated signs are triggered individually by vehicles when a certain criteria is met. An example of such criteria is to trigger a speed limit sign when the driver exceeds a pre-set threshold speed. The preset threshold is usually set to a constant value which is often equal, or relative, to the speed limit on a particular road segment. This review examines in detail the basis for the configuration of the existing sign types in previous studies and explores the relation between the configuration of the sign and their impact on driver behavior and sign efficiency. Most of previous studies showed that these signs have significant impact on driver behavior, traffic safety and traffic efficiency. In most cases the signs deployed have yielded reductions in mean speeds, in speed variation and in longer headways. However most experiments reported within the area were performed with the signs set to a certain static configuration within applicable conditions. Since some of the aforementioned factors are dynamic in nature, it is felt that the configurations of these signs were thus not carefully considered by previous researchers and there is no clear statement in the previous studies describing the relationship between the trigger value and its consequences under different conditions. Bearing in mind that different designs of vehicle activated signs can give a different impact under certain conditions of road, traffic and weather conditions the current work suggests that variable speed thresholds should be considered instead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle activated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Doppler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of the radar on the road. However, clear methodologies for in-field calibration have not been carefully established. The signs are often installed by subjective judgment which results in measurement errors. This paper develops a calibration method based on mining the data collected and matching individual vehicles travelling between two radars. The data was cleaned and prepared in two ways: cleaning and reconstructing. The results showed that the proposed correction factor derived from the cleaned data corresponded well with the experimental factor done on site. In addition, this proposed factor showed superior performance to the one derived from the reconstructed data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.