3 resultados para Project monitoring

em Dalarna University College Electronic Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Video exposure monitoring (VEM) is a group of methods used for occupational hygiene studies. The method is based on a combined use of video recordings with measurements taken with real-time monitoring instruments. A commonly used name for VEM is PIMEX. Since PIMEX initially was invented in the mid 1980’s have the method been implemented and developed in a number of countries. With the aim to give an updated picture of how VEM methods are used and to investigate needs for further development have a number of workshops been organised in Finland, UK, the Netherlands, Germany and Austria. Field studies have also been made with the aim to study to what extent the PIMEX method can improve workers motivation to actively take part in actions aimed at workplace improvements.The results from the workshops illustrates clearly that there is an impressive amount of experiences and ideas for the use of VEM within the network of the groups participating in the workshops. The sharing of these experiences between the groups, as well as dissemination of it to wider groups is, however, limited. The field studies made together with a number of welders indicate that their motivation to take part in workplace improvements is improved after the PIMEX intervention. The results are however not totally conclusive and further studies focusing on motivation are called for.It is recommended that strategies for VEM, for interventions in single workplaces, as well as for exposure categorisation and production of training material are further developed. It is also recommended to conduct a research project with the intention of evaluating the effects of the use of VEM as well as to disseminate knowledge about the potential of VEM to occupational hygiene experts and others who may benefit from its use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to evaluate results and experiences from development of new technology, a training program and implementation of strategies for the use of a video exposure monitoring method, PIMEX. Starting point of this study is an increased incidence of asthma among workers in the aluminium industry. Exposure peaks of fumes are supposed to play an important role. PIMEX makes it possible to link used work practice, use of control technology, and so forth to peaks. Nine companies participated in the project, which was divided into three parts, development of PIMEX technology, production of training material, and training in use of equipment and related strategies. The use of the video exposure monitoring method PIMEX offers prerequisites supporting workers participation in safety activities. The experiences from the project reveal the importance of good timing of primary training, technology development, technical support, and follow up training. In spite of a delay of delivery of the new technology, representatives from the participating companies declared that the experiences showed that PIMEX gave an important contribution for effective control of hazards in the companies. Eight out of nine smelters used the PIMEX method as a part of a strategy for control of workers exposure to fumes in potrooms. Possibilities to conduct effective control measures were identified. This article describes experiences from implementation of a, for this branch, new method supporting workers participation for workplace improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation growing on railway trackbeds and embankments present potential problems. The presence of vegetation threatens the safety of personnel inspecting the railway infrastructure. In addition vegetation growth clogs the ballast and results in inadequate track drainage which in turn could lead to the collapse of the railway embankment. Assessing vegetation within the realm of railway maintenance is mainly carried out manually by making visual inspections along the track. This is done either on-site or by watching videos recorded by maintenance vehicles mainly operated by the national railway administrative body. A need for the automated detection and characterisation of vegetation on railways (a subset of vegetation control/management) has been identified in collaboration with local railway maintenance subcontractors and Trafikverket, the Swedish Transport Administration (STA). The latter is responsible for long-term planning of the transport system for all types of traffic, as well as for the building, operation and maintenance of public roads and railways. The purpose of this research project was to investigate how vegetation can be measured and quantified by human raters and how machine vision can automate the same process. Data were acquired at railway trackbeds and embankments during field measurement experiments. All field data (such as images) in this thesis work was acquired on operational, lightly trafficked railway tracks, mostly trafficked by goods trains. Data were also generated by letting (human) raters conduct visual estimates of plant cover and/or count the number of plants, either on-site or in-house by making visual estimates of the images acquired from the field experiments. Later, the degree of reliability of(human) raters’ visual estimates were investigated and compared against machine vision algorithms. The overall results of the investigations involving human raters showed inconsistency in their estimates, and are therefore unreliable. As a result of the exploration of machine vision, computational methods and algorithms enabling automatic detection and characterisation of vegetation along railways were developed. The results achieved in the current work have shown that the use of image data for detecting vegetation is indeed possible and that such results could form the base for decisions regarding vegetation control. The performance of the machine vision algorithm which quantifies the vegetation cover was able to process 98% of the im-age data. Investigations of classifying plants from images were conducted in in order to recognise the specie. The classification rate accuracy was 95%.Objective measurements such as the ones proposed in thesis offers easy access to the measurements to all the involved parties and makes the subcontracting process easier i.e., both the subcontractors and the national railway administration are given the same reference framework concerning vegetation before signing a contract, which can then be crosschecked post maintenance.A very important issue which comes with an increasing ability to recognise species is the maintenance of biological diversity. Biological diversity along the trackbeds and embankments can be mapped, and maintained, through better and robust monitoring procedures. Continuously monitoring the state of vegetation along railways is highly recommended in order to identify a need for maintenance actions, and in addition to keep track of biodiversity. The computational methods or algorithms developed form the foundation of an automatic inspection system capable of objectively supporting manual inspections, or replacing manual inspections.